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Abstract Today’s robots attempt to learn new tasks
by imitating human examples. These robots watch the
human complete the task, and then try to match the
actions taken by the human expert. However, this stan-
dard approach to visual imitation learning is funda-
mentally limited: the robot observes what the human
does, but not why the human chooses those behav-
iors. Without understanding which features of the sys-
tem or environment factor into the human’s decisions,
robot learners often misinterpret the human’s examples
(e.g., the robot incorrectly thinks the human picked
up a coffee cup because of the color of clutter in the
background). In practice, this results in causal confu-
sion, inefficient learning, and robot policies that fail
when the environment changes. We therefore propose
a shift in perspective: instead of asking human teach-
ers just to show what actions the robot should take,
we also enable humans to intuitively indicate why they
made those decisions (i.e., what features are critical for
the desired task). Under our paradigm human teachers
attach markers to task-relevant objects and use nat-
ural language prompts to describe their state repre-
sentation. Our proposed algorithm, CIVIL, leverages
this augmented demonstration data to filter the robot’s
visual observations and extract a feature representa-
tion that aligns with the human teacher. CIVIL then
applies these causal features to train a transformer-
based policy that — when tested on the robot — is
able to emulate human behaviors without being con-
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fused by visual distractors or irrelevant items. Our sim-
ulations and real-world experiments demonstrate that
robots trained with CIVIL learn both what actions to
take and why to take those actions, resulting in bet-
ter performance than state-of-the-art baselines. From
the human’s perspective, our user study reveals that
this new training paradigm actually reduces the to-
tal time required for the robot to learn the task, and
also improves the robot’s performance in previously
unseen scenarios. See videos at our project website:

Keywords Visual Imitation Learning, State Repre-
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1 Introduction

Imitation learning enables robots to learn new tasks by
emulating the actions of a human expert. Consider a hu-
man teaching their robot arm to serve coffee (as shown
in Figure 1). The human guides the robot through dif-
ferent stages of the task, including picking a cup off the
kitchen counter and placing it under the coffee machine.
To learn this task, the robot observes the scene with an
onboard camera and records the actions demonstrated
by the human teacher. But these visual demonstrations
only show the robot what it should do, leaving the robot
to figure out why it should perform these actions (i.e.,
what aspects of the system and environment states fac-
tored into the human’s decisions).

Understanding the state representation behind the
human’s actions is critical for adapting to new situa-
tions. For example, humans know that the coffee cup’s
position affects how it should be grasped; if the cup
moves, humans will change their actions to match its
new configuration. However, it is difficult for robots
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to infer this underlying feature solely from the demon-
strated actions because their visual observations often
contain excess information — along with the cup, the
robot’s camera also sees other utensils and appliances
on the kitchen counter. These irrelevant details can cre-
ate causal confusion when they are correlated with the
human’s actions [14]. For instance, if the cup is al-
ways next to a bowl during the demonstrations, the
robot may not understand the human’s motive; should
it reach for the cup or go to a position beside the bowl?
Put another way — what features of the observed state
are connected to the task, and which features are irrel-
evant clutter or spurious correlations?

Existing research has focused on enabling robots to
resolve this confusion on their own by making assump-
tions about task-relevant information. Current imita-
tion learning methods try to extract the relevant de-
tails from the robot’s observations by augmenting the
data with random transformations [35,25], identify-
ing known objects in the scene [60], or using vision-
language models pretrained on large datasets [48,50].
While these approaches help robots adapt their actions
to expected variations of the task, they require a sig-
nificant amount of data to truly uncover the human’s
reasoning. For example, when we experimentally ap-
plied these baselines to the task in Figure 1, we found
that the robot may incorrectly learn to focus on the
bowl (instead of the coffee cup) because of misleading
correlations in the training data. This leads to robots
that cannot make coffee when the bowl is removed.

To address this fundamental limitation we here re-
frame the process of learning from human demonstra-
tions. Rather than expecting robots to infer the cor-
rect causality based solely on human actions, we now
extend imitation learning so that human teachers can
intuitively reveal what actions to take and why to take
those actions (i.e., what environment features guided
the human’s demonstrations). Our hypothesis is:

Robots can learn more effectively when the human
provides a smaller number of demonstrations while
communicating the key features behind their actions.

We apply this hypothesis to create interfaces that hu-
mans can leverage to convey state representations dur-
ing their demonstrations. Specifically, we use a combi-
nation of physical markers and language instructions to
give context to human demonstrations. Human teach-
ers place markers in the environment to highlight rel-
evant objects, positions, and interactions that inform
their actions (i.e., the human in Figure | might mark
the coffee cup and coffee machine). Similarly, the hu-
man can provide natural language utterances to explain
what they are doing or what they are focusing on dur-
ing their demonstration (i.e., “pick up the cup”). The

robot learner collects the demonstrated state and ac-
tions — as in traditional approaches — along with the
new marker positions and language prompts.

These augmented demonstrations provide the robot
with a more holistic understanding of the task and sup-
plement its learning in two ways. First, the robot lever-
ages the marker and language cues to filter its extrane-
ous observations and extract a low-dimensional feature
representation that encodes human reasoning. Second,
the robot learns a policy that maps these causal fea-
tures to the demonstrated actions while remaining ro-
bust to unintended correlations and irrelevant visual
data. We refer to our resulting algorithm as CIVIL:
Causal and Intuitive Visual Imitation Learning. Us-
ing CIVIL, humans can provide the robot with labeled
data about the system and environment features (why)
that guided their demonstrationed actions (what). Our
results reveal that users perceive this immersive teach-
ing protocol to be more intuitive and natural (i.e., how
humans would teach other humans). We also empha-
size that gathering the additional marker and language
data does not increase the overall teaching burden: in-
stead, we find that users require fewer demonstrations
and less total time to train the robot, and the resulting
robot policy is more robust to new scenarios.

This work is a step towards robots that are able to
correctly understand and perform tasks based on a few
human demonstrations. Overall, we make the following
contributions:

Analyzing Challenges in Visual Imitation Learn-
ing. We show why it is fundamentally challenging for
robots to learn from high-dimensional and redundant
observations, such as images from the robot’s camera.
Using linear regression analysis, we first prove that hu-
mans must provide exponentially more examples as the
dimensionality of observations increases. We then illus-
trate why robots struggle to infer the human’s reason-
ing and generalize to new scenarios when their obser-
vations contain spurious correlations.

Introducing CIVIL. To address these fundamental
challenges, we enable humans to demonstrate tasks
while also explaining their actions with physical mark-
ers and language instructions. We present our CIVIL
algorithm that leverages these inputs to train robots
that i) extract causal features from their observations

L A preliminary version of this work was published at the
IEEE International Conference on Intelligent Robots and Sys-
tems [45]. As compared to [415], this manuscript i) provides
theoretical analysis justifying our proposed demonstration
paradigm, ii) develops an end-to-end vision and language
network that extracts causal features from human guidance,
and iii) compares CIVIL to state-of-the-art alternatives while
evaluating how humans interact with CIVIL.
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Fig. 1 Human teaching a robot arm to prepare a cup of coffee. The robot must learn to grasp the cup and place it under
a coffee machine based on visual observations. Within traditional approaches the human demonstrates what actions to take,
and the robot learns to emulate these demonstrated actions. However, this approach is inefficient because the robot is not
taught why the human chooses a specific behavior (i.e., what features of the environment factored into the human’s decisions).
Without this causal information that links features to actions the robot can misinterpret the human: for instance, if a bowl is
always placed to the left of the cup during the demonstrations, the robot might learn to go beside the bowl instead of go to the
cup. We hypothesize that robots can learn more efficient and robust control policies when the human teacher communicates
the features behind their decisions (i.e., why they are choosing the actions they demonstrate). CIVIL shifts imitation learning
towards holistic demonstrations with physical markers and natural language instructions.

and then ii) map those features to task actions. Im-
portantly, we only require markers and language com-
mands during training. Once trained, the robot can per-
form the task autonomously without any supervision.

Comparing to State-of-the-Art Alternatives. We
compare robots that act on the human-supervised fea-
tures of CIVIL against multiple state-of-the-art base-
lines that let robots derive causality through self-
supervision [35], object detection [60], and pre-trained
vision-language models [10]. Our experiments include
simulations in CALVIN [31], a benchmark for learning
manipulation tasks, as well as real-world experiments
with Franka robot arms. Robots trained on CIVIL are
more successful in performing the tasks than the base-
lines, especially when tested on unseen task instances.

Evaluating with Real Users. We conduct experi-
ments where real users leverage our CIVIL protocol to
train the robot arm. We focus on the user’s subjec-
tive perception of the demonstration process, as well
as the robot’s objective performance when trained on
user data. Our results suggest that users find it easy
and intuitive to leverage markers and language during
demonstrations, and — when giving the same amount
of time for providing demonstrations — robots trained
with CIVIL learn to perform the task more proficiently.

2 Related Work

Our work explores visual imitation learning for robot
manipulation tasks. Below we summarize this field,
while focusing on existing methods that enable the hu-
man teacher to augment their demonstrations.

2.1 Visual Imitation Learning

When imitating humans, the robot learns a policy that
maps its observations to the actions demonstrated by
a human expert. We expect robots to learn this expert
policy from a few demonstrations and then transfer it to
other, potentially unseen variations of the task [34,29].
But when the observations are high-dimensional and
contain extraneous information, it can be difficult for
robots to infer which parts of these observations actu-
ally affect the task performance [14]. For example, the
robot in Figure | may not know which objects to focus
on when making coffee on a cluttered kitchen counter.

To resolve this confusion, robots can encode their
observations into a low-dimensional feature representa-
tion that only retains essential information — such as
the position of the cup — and ignores irrelevant de-
tails like lighting changes and background objects [55].
Existing approaches let robots derive these features on
their own by making assumptions about the extraneous
aspects [35,42,37,48], or simply focusing on the known
objects in the scene [38,60,24].

For instance, the robot can generate alternative
views of the images taken from its camera by apply-
ing transformations like color distortions and random
cropping [12,17,20], and then train an encoder to map
these transformed views into the same features as the
original, unmodified images. This helps the robot learn
a feature representation that is invariant to noisy trans-
formations. Alternatively, the robot can use existing vi-
sion models to detect known objects in its view and
train its policy on features derived from the segmented
images of these objects [60]. This approach encourages
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the robot to disregard background details like the ap-
pearance of the kitchen or the lighting of the room.

While these unsupervised approaches make the
robot robust to distractors like lighting and back-
ground, they rely on the robot to implicitly infer the
relevant features (e.g., the cup’s position) from human
demonstrations. This slows the learning process — hu-
mans need to provide demonstrations in diverse scenar-
ios to facilitate causal inference [1] — and can also be
counterproductive when the assumed variations deviate
from the human’s reasoning [17]. For example, if a user
wants the robot to interact with objects of a specific
color or focus on some background cues, training with
images that vary in color or exclude the background
can further confuse the robot.

Hence, in this work we enable humans to explicitly
convey their underlying feature representations to the
robot. We anticipate that communicating the reason-
ing behind human actions will mitigate causal confu-
sion and accelerate learning. Accordingly, we next dis-
cuss prior works that have explored how humans can
intuitively reveal their intentions to robot learners.

2.2 Learning Human Representations

Robots can learn more efficiently and generalize bet-
ter to unseen scenarios when their representations are
aligned with human reasoning [6]. To achieve this align-
ment, humans need to share further insights into their
decision-making while demonstrating the task. Earlier
works have proposed obtaining representations by ask-
ing humans to select the task-relevant factors from a
pre-defined list [10,3,32], label the features for exam-
ples in the training data [51,47], and provide demon-
strations that trace the gradient of a relevant feature [7].
However, these approaches are either cognitively de-
manding because users find it difficult to quantify fea-
ture values [26], or physically taxing due to the need
for additional feature-specific demonstrations. To feasi-
bly obtain this information in practice, it is important
to leverage natural and intuitive communication chan-
nels that can be seamlessly integrated into the robot’s
training process [18]. Therefore, recent work has fo-
cused on pairing demonstrations with natural language
prompts [18,30,23,58,28,8,52,56], and introducing in-
tuitive sensors and interfaces to collect additional hu-
man inputs [50,57,49,54,39,27,16,5,33].

Humans can organically explain their actions us-
ing natural language. For example, when demonstrating
how to make coffee, users may say “pick up the cup”
and then “place it under the coffee machine.” Prior
works have shown that robots can utilize these prompts
to improve their representations in multiple ways. Many

previous approaches encode language descriptions into
feature vectors and pair them with visual features to
provide more context for the robot’s policy [30,23,58,
,8,52]. Some works use language to supervise how
features are extracted from robot observations by using
contrastive learning, as in CLIP [40], or by condition-
ing their visual encoder [25]. Lastly, instead of learning
the features from scratch, we can take pretrained vision-
language models and fine-tune them on demonstrations
of the task [18,50]. In our work, instead of using lan-
guage to contextualize the robot’s features or policy, we
leverage language to filter the robot’s observations —
highlighting relevant objects in the scene and removing
irrelevant details that can confuse the learner.

Although humans can explain parts of their think-
ing using natural language, not every aspect of a task
can be easily put into words, e.g., subconscious visual
cues or complex motion constraints. Such details can
be communicated more intuitively through specialized
instruments. For instance, humans can cheaply con-
vey rich motion information using hand-held grasping
tools [50,57], optical trackers [19], and wearable tac-
tile gloves [54]. Humans can also utilize augmented re-
ality interfaces to specify keyframes and motion con-
straints [39,27]. Alternatively, the robot can track hu-
man gaze and focus on the same regions of its observa-
tions as the expert user [16,5]. We explored this option
in our preliminary work [45], where humans used Blue-
tooth sensors to locate relevant objects in the environ-
ment; similarly, [59] introduced an interface for humans
to mark these objects on images of the scene [59]. How-
ever, we find that physical markers alone are not suffi-
cient to capture critical features. These markers might
indicate where the robot should focus (e.g., “look at
the light bulb”), but not what aspects to focus on (e.g.,
“check if the light is on or off”).

Our work finds a balance between instrumented and
natural human inputs. We use a combination of phys-
ical markers and language descriptions to specify rel-
evant poses and objects that humans consider when
taking actions. Our approach leverages these inputs to
encode the robot’s visual observations into a feature
representation that is aligned with human reasoning.
Unlike previous approaches, we only require additional
inputs during training. Once the robot learns the cor-
rect representation, it can autonomously perform new
variations of the task without needing markers or lan-
guage prompts.

3 Problem Statement

We consider settings where a robot arm is learning a
task from human demonstrations. When teaching a new
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task, the human teleoperates or kinesthetically moves
the arm through a few instances of that task. For exam-
ple, the human may show how a coffee cup can be picked
up from different locations on the kitchen counter.

Robot. As the human demonstrates the task, the robot
records its states € R™ (e.g., joint angles), actions
u € R™ (e.g., joint velocities), and observations y € R™
(e.g., images taken from onboard and static cameras).
While = only represents the arm’s proprioceptive state,
y also captures information about the surrounding en-
vironment. Overall, the human provides a dataset D
of (z,y,u) tuples. The robot’s goal is to leverage this
dataset to learn a control policy 7 that maps the states
2 and observations y to the demonstrated actions wu:

mo(z,y) =u V(x,y,u) € D (1)

The policy parameters 6 determine what actions the
robot chooses for a given state and observation.

Features. The robot’s observations are high-
dimensional and contain both relevant information for
learning the task and extraneous details that should be
ignored. For instance, along with the cup that we want
the robot to grasp, it could also see a bowl and other
kitchen appliances on the counter. The robot does not
know which parts of these observations are relevant a
priori. We represent the task-relevant information as
a compact feature vector ¢* € R? where the feature
dimension d is less than the dimensionality n of the
observations. In our example, ¢* contains the cup’s
position and orientation but excludes the bowl and
other irrelevant items on the kitchen counter. Our
work focuses on extracting the relevant features from
the human’s demonstrations so that we can map
high-dimensional states into compact feature vectors.

Human. Unlike the robot arm, humans know the task-
relevant aspects and can extract the associated features
from the high-dimensional observations through a fea-
ture function f.

fo-(2,y) = ¢° (2)

The parameters ¥* determine how humans map the
complex observations to the relevant features. With-
out loss of generality, we assume that humans only act
based on these features (e.g., the human will not fo-
cus on the bowl’s position when reaching for the cup),
and so the human’s policy is a function of the relevant
features ¢*.

mo- (1, ") = u 3)

In the above #* are the true parameters of the policy
that the human wants to teach the robot. Intuitively,

the policy parameters 6* dictate what actions the hu-
man will take and the features ¢* determine why the
human chooses that action for a given robot state and
observation (i.e., ¢* provides a feature state represen-
tation for the desired task).

Ideally, the control policy learned by the robot arm
should produce the same actions as the human expert.
In what follows, we discuss two key challenges in learn-
ing such a policy from visual observations given a lim-
ited amount of training data D. First, we highlight the
importance of encoding the robot’s observations into
low-dimensional features (similar to those of the human
expert) in order to improve learning efficiency. Second,
we illustrate why it is difficult for robots to learn poli-
cies that can generalize to new task instances when their
observations contain correlated visual elements.

3.1 Using Low-Dimensional Features to Accelerate
Learning

We first analyze the challenge of efficiently learning
from high-dimensional observations like RGB images.
More specifically, we show that the data required to
learn the task increases exponentially as we increase
the dimensionality of the inputs to the robot’s policy.
To formalize this problem, we consider a linear regres-
sion example where the robot has a dataset that con-
tains N samples of states x € R™, observations y € R™,
and demonstrated actions u € R™. We assume that the
robot encodes the states and observations into features
¢ € R? using an encoder matrix ¥ € R(m+n)xd;

o= [XY]|U

where X € RVX™ and Y € RV*" are the matrices
formed by stacking the states x and observations y in
the dataset, and ® € RV*4 is a matrix of correspond-
ing features ¢. For now, we provide the robot with a
pretrained encoder ¥ which extracts features that are
sufficient for learning the task.

The robot’s goal is to learn a matrix of policy pa-
rameters # € R4*™ that maps the features to actions
U € RNxm,

U=0300 +¢

The term € accounts for any errors made by the human
teacher when demonstrating the task actions. Given
this problem formulation, we now establish how the di-
mensionality d of the features affects the number of
samples N required to learn the policy parameters 6.
Specifically, under the standard assumptions listed be-
low, we prove that:
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Proposition 1. When the demonstrated actions u have
a zero-mean Gaussian noise €, and the features ¢ in-
put to the robot’s policy are normally distributed, the
amount of data N required to learn the parameters 0
of a linear policy varies exponentially with the dimen-
sionality d of the features.

Proof We assume that the actions demonstrated by the
human have a zero-mean Gaussian noise:

e~ N(0,021,,)

When the error follows a normal distribution, the or-
dinary least squares estimator 6 is also normally dis-
tributed [2]:

0 ~N(@O,02(@TD)1)

The variance in the estimated parameters corresponds
to the uncertainty in converging to the human’s pol-
icy. We quantify this uncertainty using the continuous
Shannon entropy of the estimator’s distribution [1]:

d d 1

Here d is the dimensionality of the features. We will
now simplify the covariance term X; to verify how this
uncertainty scales with the feature dimensions. We start
by writing ®7® as a sum of the outer product of the
feature vectors ¢; € ®:

N
TR = "6 ® ¢
i=1
From the definition of variance [11], the expected value
of the outer product can be written in terms of the
mean and variance of the feature vectors:
N N
E lz ¢¢¢¢T1 = (So + pond)
i=1 i=1
To simplify this further, we assume that the fea-
ture vectors are normally distributed such that ¢; ~
(0,0%14). Note that this is a common assumption in
previous approaches that use Variational Autoencoders
(VAEs) [15] to encode image data. Equipped with this
assumption, we can now write the expected value of
the outer product as E[@T®] = Nai[d and substitute
it back into the covariance of the estimator distribution:

Y= crf(Nai)’lld

Finally, we take the determinant of the covariance ma-
trix and express the entropy over the estimated param-
eters as:

h(fs) < d-In (jifgg) (4)

¢

From this result, we observe that uncertainty in the
learned parameters decreases logarithmically with the
number of data samples N but increases linearly with
the number of feature dimensions d. In other words, as
we decrease the dimensionality of input features, hu-
mans would need to provide exponentially fewer data
samples to converge to the human’s policy. a

Proposition 1 illustrates the importance of mapping
the robot’s high-dimensional observations into a mini-
mal feature representation. But what is the right repre-
sentation? Thus far we have assumed that the robot has
access to a feature function 1 that extracts sufficient in-
formation for learning the task. In the next subsection,
we will show that there can be many feature represen-
tations that are sufficient for imitating the actions in
the training data but do not align with the human’s
reasoning ¢*. As a result, these alternate feature rep-
resentations are susceptible to covariate shift and fail
when the robot encounters new states at test time.

3.2 Causal Confusion in Visual Imitation Learning

When the robot does not have any prior knowledge of
the task-relevant features, we can simultaneously train
a feature function fy(x,y) = ¢ and policy mg(zx, ¢) = u
on samples from the training dataset D:

We(ff7fw($vy)) =u V(x,y,u) €D (5)

However, this does not guarantee that the features
learned by the robot will match the task-relevant fea-
tures ¢*. For instance, when teaching the robot to make
coffee, imagine that the cup is always placed next to a
bowl during training. While the human knows that only
the cup is important, the robot may mistakenly learn
to extract the bowl’s pose (irrelevant features) or infer
the cup’s pose by observing the bowl instead (spuri-
ous correlations). Despite this incorrect mapping, the
robot could learn a policy that successfully grasps the
cup in all training instances because of its positional
relationship with the bowl.

More generally, these correlations create causal con-
fusion [14] when applying the learned feature function
in unseen scenarios. To demonstrate this formally, we
return to the linear regression problem. We now assume
that the encoder matrix v is unknown and combine it
with the policy parameters to create a single weight
matrix W = ¢6:

U=[XY]h+e=[XY]W +e

In an ideal scenario, there is no noise (¢ — 0) in the
human’s demonstrations, and the input matrix [XY]
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has full rank. This allows us to obtain an exact least-
squares solution:

W =[xY]iU

Here [XY]' denotes the pseudo-inverse of [XY]. While
there are infinite ways to factorize W into the compo-
nents 1[} and é, because we have a unique W, all of these
choices are equivalent to the human’s true weights W*:

W =0 = *0" = W*

By contrast, when there is non-zero correlation be-
tween the input dimensions — e.g., manipulating the
cup that is next to a bowl — the input matrix [XY]
will have a non-trivial null space, resulting in an infinite
number of solutions for WW:

W=W*"+V

Here V is any matrix in the null space of [XY] that sat-
isfies [XY]V = 0. This means that the weights learned
by the robot will not match the true weights, W # W™,
except in the special case when V = 0.

This difference in learned weights will not affect the
robot’s performance if the correlations in the training
data are also present at test time. In this case, the test
inputs [XY]tes+ will have the same null space as the
training data:

[XY]testV - 0

As a result, W will produce the same actions as W.
However, if the correlations in the inputs change at test
time, then the learned weights W will not produce the
same actions as W* for any non-trivial V. For instance,
if the positions of the bowl and cup are no longer related
during testing, the test inputs [X, Y]ies: will have full
rank. This means that V will not belong to the null
space of [ X, Y]test:

[XY]testV 7é 0

As such, the actions predicted by the robot will differ
from the true actions given by W*:

Utest = [XY]testW* 7é [XY]testW (6)

Overall, this result demonstrates that when the robot’s
observations contain unwanted correlations, the robot
can still learn what actions to take during training but
it will not understand why to take those actions. Be-
cause of this fundamental misalignment the learned pol-
icy may not generalize to new scenarios that differ from
the training distribution.

3.3 Problem Summary

In this section we showed that the amount of demon-
stration data required to train the robot policy in-
creases exponentially with the dimensionality of the in-
put states and observations. This slows down learning
for robots that take actions based on dense inputs like
camera images. We can improve the learning efficiency
by encoding robot observations into a compact feature
representation. Unfortunately, if the observations con-
tain misleading correlations, the encoded features will
fail to correctly explain the human’s actions — regard-
less of how many demonstrations the human provides.

When correlations are present in the training
dataset the robot has no way of determining causality.
Instead of pushing this fundamental limitation entirely
to the robot, we will enable humans to explicitly con-
vey relevant visual cues and features during training.
This additional information can help robots filter the
spurious correlations in their observations and extract
compact features that causally influence human actions.
In the following section we present our approach for ob-
taining these additional inputs from humans and train-
ing robots to mimic the human decision-making pro-
cess (i.e., imitating what the human does and why they
choose those actions).

4 Causal and Intuitive
Visual Imitation Learning

We want robots to efficiently learn new tasks from hu-
man demonstrations and generalize the learned behav-
ior to unseen task instances. In the previous section we
showed that understanding compact features is criti-
cal to efficient learning, but merely imitating human
actions is not always sufficient to recover these fea-
tures. To address this problem, we here re-frame how
humans provide demonstrations to include both show-
ing the desired behavior (what) and also highlighting
the features that influence their behavior (why). We
recognize that humans understand what aspects of the
task are important to their decision-making process,
and human teachers can label the task-relevant fea-
tures ¢* = fy-(x,y) from visual observations (see Fig-
ure 2). Our proposed CIVIL algorithm then synthesizes
the augmented demonstrations to perform offline visual
imitation learning and recover the desired task.

In Section we first equip humans with instru-
ments that enable them to intuitively communicate
information about the relevant features (i.e., ¢*) and
which parts of the observations they consider when ex-
tracting these features (i.e, ¢*). Next, in Section 4.2,
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Fig. 2 Augmented data collection procedure for CIVIL. In
Step 1, we enable humans to mark task-relevant positions
(e.g., the coffee maker) with ArUco markers. In Step 2, as the
human demonstrates the task they can provide natural lan-
guage prompts that mention task-relevant objects (e.g., the
cup). The resulting dataset for offline learning includes states
x, images y, actions u, marker data b, and language prompts
[. After providing data, the human removes the markers from
the environment, and the robot processes its images to inpaint
those markers so that they are not required at test time.

we describe our network architecture for extracting fea-
tures from robot observations and mapping them to cor-
responding robot actions. We apply this architecture in
Section to develop the CIVIL algorithm which syn-
thesizes data collected from our instruments to align
the robot’s features with the human’s reasoning. Fi-
nally, in Section we provide implementation details.
A key contribution of our approach is that the robot
does not need instruments after training and can per-
form the task autonomously at test time based only on
visual observations.

4.1 Obtaining Task-Relevant Information from
Humans

We envision two channels for humans to intuitively ex-
plain their thinking when demonstrating tasks: i) con-
veying the features they extract, and ii) highlighting the
visual elements they focus on. To facilitate both chan-

nels, we introduce instruments for humans to seamlessly
integrate into their demonstrations.

Communicating Relevant Features. Task actions
often depend on contextual variables such as the posi-
tion of a target object, the color of a traffic signal, or
the speed of a moving obstacle. We can enable humans
to communicate these variables to the robot by equip-
ping them with the required sensors and interfaces. In
this work, we provide humans with physical markers
to specify poses and waypoints relevant to the desired
task. Specifically, we let humans place ArUco mark-
ers [16] in the environment before providing demon-
strations. These markers then continuously stream their
poses b € R% to the robot as the human performs the
task. The ArUco markers have a binary pattern that
can be detected by the robot’s camera for pose estima-
tion; these markers are also small (one inch in width),
lightweight (~10 grams), and adhere to various surfaces
in the environment. Consider our running example in
Figure 2: when teaching the robot to pick a coffee cup,
humans may attach a marker to its side to indicate
where they want to grasp. The marker poses b directly
inform the task actions (i.e. how the human teleoperates
the robot). Hence, we consider poses b as task-relevant
features that the robot learner should extract from its
observations and incorporate in its control policy.

While we only use positional markers in our experi-
ments, b can more generally include any variables mea-
sured through sensors placed by humans in the environ-
ment. For example, users could deploy pressure sensors
to communicate the force required to grasp different
objects during training.

Communicating Relevant Visual Elements. Not
all features essential for performing the task can be di-
rectly communicated using markers. For instance, along
with the grasping pose of the coffee cup, the human
might also care about the color of an indicator light on
the coffee machine. Of course, we could develop a sensor
to measure this new variable — but it would be much
more convenient for the user if they could just describe
the features of interest. We therefore enable humans
to direct the robot’s attention toward relevant visual
elements by using natural language instructions | € L.
For example, human teachers may say “pick up the cof-
fee cup” and “look at the light on the coffee machine”
when teaching the robot to make coffee. While these
instructions do not specify the features explicitly (such
as the measured grasping pose) they help the robot un-
derstand which aspects of the environment the human
focuses on (e.g., the cup and coffee machine) and which
they ignore (e.g., other objects like the sugar box).
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Fig. 3 Network architecture of CIVIL. The model consists of encoder networks that map environment observations (images)
to a compact feature representation ¢, and a policy transformer that takes a sequence of robot states and features as input and
predicts the task action. The training of our model is split into two phases. (Left) In the first phase we supervise a subset of
the features using a marker network h to explicitly encode the relevant poses b marked by the human expert. At the same time,
we train the remaining features to implicitly capture other task-relevant information by masking the input images to highlight
the relevant objects conveyed by the human through natural language instructions [. The features are trained together with
the policy transformer by optimizing a dual loss function that aligns the robot’s representation with human reasoning (the
why) and minimizes the error between predicted and ground truth actions (the what). (Right) In the second phase we freeze
the encoder network and policy network, and train a causal network ¢ to map the original images to the same features as those
learned by the robot from the masked images in the first phase. This step ensures that the robot can extract the task-relevant

features without needing the human to place markers or provide language prompts at runtime.

To connect the human’s utterances with visual ob-
servations we leverage a language-conditioned video
segmentation model, DEVA [13]. In practice, DEVA as-
sociates the human’s verbal prompts with objects in the
robot’s view, producing bounding boxes {B} around
objects the human mentions. Note that humans can
also indicate relevant objects using ArUco markers. We
therefore harness the markers similarly to language, and
give them a dual purpose: in addition to estimating
marker pose, we detect objects closest to the marker
and retrieve those objects’ bounding boxes. Similar to
the human teacher, the robot should focus on the visual
elements within the bounding boxes when extracting
the features. We expect that this attention will reduce
causal confusion with irrelevant objects and allow the
robot to implicitly infer task-relevant features from the
demonstration data.

Data Collection. Overall, we shift the demonstration
process so that human teachers can use physical mark-
ers to explicitly convey relevant poses, and natural lan-
guage (or markers) to indicate relevant objects for im-
plicit features. Figure 2 shows how we integrate these
instruments into the learning pipeline. We ask humans
to place the markers before providing demonstrations
(Step 1), and then issue natural language commands as

they demonstrate the task (Step 2). Our experimental
data suggests that both instruments are intuitive for
humans to deploy. In our studies, users required less
than 15 seconds to attach the markers to relevant ob-
jects for teaching a coffee-making task (see Section 7).
The robot stores the (b,1) data collected from these in-
struments alongside the states x, images y, and actions
u. Thus, the augmented dataset D contains information
about what actions to imitate and why in the form of
(z,y,u,b,1) tuples. Once all demonstrations have been
collected, humans remove the markers from the environ-
ment (Step 3). We inpaint these markers from images
in the dataset so that the robot does not need to rely
on seeing the markers in order to perform the task. The
robot only retains the marker poses it recorded during
the offline demonstrations.

This is a significant change from standard imitation
learning approaches that learn solely from examples of
what the robot should do, i.e., just (z,y,u) tuples. The
additional information (b,l) we collect can potentially
help the robot resolve causal confusion when learning
from visual inputs. We next present our model architec-
ture and loss functions to train a causal feature function
and robot policy from the augmented data D.
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4.2 Network Architecture

Our proposed network architecture is illustrated in Fig-
ure 3. The robot uses an encoder network fy(x,y) = ¢
to map the n-dimensional visual observations y € R"
into d-dimensional features ¢ € R?. Based on Proposi-
tion 1 in Section , designers should set the dimen-
sionality of these features to be much lower than that
of the observations (i.e., d << n) in order to accelerate
robot learning. As we will describe later, d also depends
on the number of markers or language utterances that
the human teacher provides.

In practice, the robot often has multiple cam-
era views of the environment (such as a static cam-
era and an ego-centric camera). To synthesize these
views our architecture includes multiple encoders —
one for each camera — and then combines the out-
put of these encoders with the robot’s propriocep-
tive state x € R™. This combination captures the
robot’s current observations. To provide more context
for the robot’s actions (and enable the robot to rea-
son over its recent history) we then collate a sequence
of k 4+ 1 states and corresponding features to form
X = [(@t—k, Pt—k);-- -, (¢, ¢d¢)]. This collated data is
then input to a policy transformer my:

o (X) = Q¢ (7)

Here subscript ¢ denotes the data recorded at a specific
time step in the human’s offline demonstrations. The
policy transformer takes the states and features as input
and predicts an action token a; for the latest time step.
We map this token to a robot action u; using an action
network g,(a) = u.

Aspects of our architecture follow the structure of
previous visual imitation learning approaches [9,19].
But — as we will show — the key difference is how we
employ supplementary inputs (b,1) to align the learned
features with the human’s true features. In what follows
we introduce the auxiliary networks and losses needed
to achieve this alignment.

4.3 Supervised Learning with CIVIL

We now describe our Causal and Intuitive Visual Im-
itation Learning (CIVIL) algorithm for training the
robot’s policy and feature networks on the augmented
dataset D. Our algorithm consists of two training
phases as shown in Figure 3. In the first phase, we
leverage human guidance in the form of markers and
language to learn a task-relevant feature representation
(and a downstream policy). In the second phase, we

train the robot to causally extract these features with-
out any human guidance so that the markers and lan-
guage are not needed at test time.

We begin by outlining the first phase. Our train-
ing dataset includes two sources of information about
the task-relevant features ¢*. The marker poses b only
constitute a subset of these features; the robot should
infer the remaining non-positional features based on the
relevant objects highlighted by users with markers and
language commands [. We capture this distinction by
dividing the robot’s features ¢ into two components —
one for the positional features explicitly communicated
by the user, and another for the non-positional features
that that are implicitly learned by the robot:

¢ = [(bezplicita ¢implicit] (8)

We learn these components separately using the marker
and language inputs described below.

Explicit features. The marker poses b directly inform
the task actions. Therefore, we want the robot’s features
¢ to include all the information from the markers. At
the same time, we recognize that the intended feature
¢* may be different than the beacon’s position b —
perhaps the human is trying to convey position-related
features such as size, shape, or distance. To capture
this correlation between b and ¢ we learn ¢egpiicit Such
that it is a minimally sufficient representation of b. In
other words, @czpiicit should not include any extra in-
formation than what is needed to capture the marker
data. Formally, we can make ¢¢gpiici+ contain all infor-
mation about b by minimizing the conditional entropy
of b given ¢erplicit~

H(b ‘ ¢explicit) = _E(x,y,b)ND Ing(b ‘ d)ezplicit) (9)

Minimizing H (b|¢eupiicit) means that when we see
Qeaplicit the robot can determine the corresponding b
vector. However, this does not ensure that the explicit
features exclude other irrelevant information. To pre-
vent this irrelevant data, we must also minimize the
conditional entropy H (¢expiicit|b):

H(¢explicit | b) = _E(a:,y,b)wD 10gp(¢ezplicit | b) (10)

From our information-theoretic analysis we seek to
learn ¢eypricit S0 that it minimizes both Equation (9)
and Equation (10). We practically achieve this by in-
troducing a marker network h(b | @ewplicit) which
maps explicit features to marker readings. This net-
work functionally represents the conditional probabil-
ity p(b | @eaplicit). We train the forward marker network
along with the encoder network f, by minimizing the
following loss function based on Equation (9):

£explicit = _E(z,y,b)r\«D logh(b | f'LZJ (x7y)e:cplicit) (11)



CIVIL: Causal and Intuitive Visual Imitation Learning

11

Here fy(%,Y)ewplicit = Pewplicit 18 the portion of fea-
tures that we use to encode the relevant poses. The
loss in Equation (11) captures half of our analysis, and
ensures that the features encode b. To prevent the fea-
tures from encoding unnecessary information and sat-
isfy Equation (10), we make h(:) an invertible function.
This design choice means that when we train h to map
the explicit features to the corresponding marker po-
sitions, we can also map those positions back to the
features without adding or losing any information. We
ensure that h is invertible by configuring all layers to
have the same dimensions — forming a square matrix
— and not adding any non-linear activation layers in
between. Consequently, we must set @eazpricit to have
the same dimensions dp as the marker data b. In our
experiments, we model h as an identity function I, .

Note that the explicit features ¢ezpiicit need not just
be the marker positions: they can also contain any non-
positional information that is correlated to the marker
data. For example, the explicit features may capture
the size and shape of the cup in the camera images be-
cause these aspects vary with the cup’s position. These
features can be then used by the robot in a variety of
ways, e.g., the robot can estimate the distance of the
cup based on its size and use the shape to determine
where it should be grasped.

Implicit features. Other than explicitly specifying the
relevant positions through markers, the human also in-
dicates relevant objects using natural language prompts
I € L. Here we explain how the robot maps these
prompts to the implicit features ¢;mpiicir from Equa-
tion (&). Our first step is to locate the objects mentioned
by the human within the corresponding image y. We do
this by feeding the image y and language prompt [ to
a DEVA model to obtain a bounding box B for each
mentioned object. We also generate bounding boxes for
objects that overlap with any markers detected in the
image. For each (y, ) pair we thus obtain a set {B} that
includes bounding boxes of task-relevant objects.

We recognize that the human teacher understands
the desired task, and we assume that we can rely on
that human to identify the key objects or aspects of
the task via language and markers. This implies that
parts of the image y outside the bounding boxes {5}
are likely irrelevant and should be ignored by the robot
when extracting features. To enforce this, we generate
masked images ¢y’ € R™ by setting all pixels in y that are
not within the bounding boxes as zero, and incorporate
these filtered images into the training dataset D.

The masked images 3’ retain relevant information
(e.g., the cup and coffee maker) and discard most of
the extraneous details (e.g., clutter on the kitchen ta-
ble). But still, the robot does not explicitly know which

features to extract from these images and must implic-
itly learn them based on the actions demonstrated by
the human. In our approach we learn the implicit fea-
tures by training the encoder network and policy trans-
former end-to-end to imitate human actions. Specif-
ically, we minimize the Kullback—Leibler (KL) diver-
gence between the robot’s policy g, o mg and the hu-
man’s optimal policy my« across the training dataset:

DKL(WG* | ga) = _E(ac,y’,u)wD[IOgga(u ‘ a‘)} +C (12)

Here a is the action token output by the policy trans-
former 7y given a sequence of states and features X =
[T¢—i, 1—i|F_, where the features ¢,—; = fy(zi—i,yi_;)
are extracted from masked images y’. The constant C
represents the entropy of the expert’s policy mg« which
does not depend on the robot’s parameters. Hence, we
can ignore the constant term and obtain the following
loss function for the robot’s policy:

Epolicy = 7E(w,y’,u)~D UOg gg(u|ﬂ'9(:€, f@b (l’, y/)))] (13)

Minimizing Lyoicy trains the policy transformer and
action network to imitate the actions in the training
dataset, and encourages the encoder network to ex-
tract features that facilitate this imitation. What makes
this component of our approach different from prior
work is that we extract these features from masked
images. Remember that the robot does not know the
relevant aspects a priori, so if we try to infer the un-
derlying features from the raw images y there is a
greater change of spurious correlations across the high-
dimensional dataset. However, when we mask the irrel-
evant details based on objects referenced by the human,
it reduces the entropy of the visual data and the likeli-
hood of learning false associations, enabling the robot
to better derive features that explain why the human
teacher chose their actions.

To summarize, we mask robot observations based
on objects mentioned in the language prompts [ to im-
plicitly learn the relevant features with Equation (13).
In addition, we also use the masked images y’ instead of
the full images y to explicitly encode the relevant poses
b with Equation (11). This supervised feature extrac-
tion and policy learning constitutes the first training
phase of CIVIL (i.e., the left side of Figure 3).

Causal Encoder. We now describe the second phase
of CIVIL shown on the right side of Figure 3. So far we
have found a way to obtain the task-relevant features
during training; next, we must consider how the robot
can obtain these same features at test time. During
demonstrations the human can augment the robot’s ob-
servations through markers and language, which CIVIL
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leverages to extract task-relevant and supervised fea-
tures. But when performing the task autonomously the
robot will no longer have this guidance — so the robot
needs to understand how to extract these features from
unmasked images y of the environment.

To facilitate this, we freeze the parameters of the
encoder network fy that we trained in the first phase
and introduce a new causal network cy that will learn
to extract the task-relevant features from the unmasked
images y. We train this causal network to map the un-
masked images y to the same features as those obtained
by the trained encoder network from the corresponding
masked images y':

£causal =

Yo felay) =@yl (14)

(z,y,y’')ED

By minimizing the loss L qusqa; We teach the causal net-
work to encode the same task-relevant features that the
encoder network learned to extract in the first phase.
We expect that this will encourage the causal network
to focus on the same regions of the raw images y as
those highlighted by the human with their language
and markers.

At run time the robot can leverage causal network
cy to filter its camera images. The robot then passes
these filtered images to the policy transformer, which
ultimately outputs actions taken by the robot arm. In-
tuitively, this second training phase removes the depen-
dence on human language or physical markers during
online execution.

CIVIL Algorithm. The steps for training our archi-
tecture are listed in Algorithm | (and visualized in Fig-
ure 3). The human first places markers in the environ-
ment to stream relevant poses and then demonstrates
the task while providing natural language prompts to
indicate the relevant objects. The robot uses the mark-
ers and language instructions to obtain bounding boxes
for all key objects and mask the irrelevant portions of
the robot images. These masked images are added to
the training dataset along with the marker readings.
We train our network architecture end-to-end by mini-
mizing the loss L., in the first training phase:

Ecivil = Epolicy + Eerplicit (15)

In the second training phase, we freeze the encoder net-
work and then train the causal network with Equa-
tion (14). Overall, the trained causal network models
how humans reason over the environment observations,
while the trained policy transformer replicates how hu-
mans decide the task actions.

Algorithm 1 CIVIL

1: Human adds markers to the environment

2: Human demonstrates task while giving language
prompts: D = {(z,y,u,b,1)}

3: Augment dataset with masked images D + DU [y/]

Initialize model networks fy, 79, go, Cx
forie1,2,...do

Compute L.;p;; on D

Update (¢,0,0) < (¢,0,0) — aVy. o.o0Lcivil
end for

Freeze fy network
10: Augment dataset with play data Degysar < D U
Dplay

11: for j €1,2,...do

12: Compute Legusar 00 Dequsal
13: Update A < A — aVaLcqusal
14: end for

15: return Trained networks cy, 7, 9o

4.4 Tmplementation
A public CIVIL repository q available here:

During our experiments the robot takes images
from both a static third-person view ygsqric and an
ego-centric view yeq0. Accordingly, we train differ-
ent encoder networks fy,(Z,Ystatic) = @static and
Sups (@, Yego) = Pego for images from each camera view,
and implement two corresponding causal networks cy,
and cy,. While ¢g44tic has both explicitly and implic-
itly learned components as in Equation (8), we only
extract implicit features from the ego-centric view be-
cause it does not always observe the marker positions
(i.e., objects move in and out of the ego frame). We
pass both features (z, siatic, Pego) as input to the robot
policy. Before feeding these inputs to the policy trans-
former 7y, we project the states and features into sep-
arate tokens of size 128 and add a sinusoidal positional
encoding to each token to indicate its location in the
sequence [53]. The encoders are convolutional neural
networks; specifically, we choose ResNet-18 initialized
with pre-trained weights [21]. The policy architecture
includes a 2-layer transformer encoder followed by a
multi-layer perceptron (MLP) action network with two
hidden layers.

Play data. CIVIL enables robots to align their repre-
sentations with those of the human teacher. But to gen-
eralize these representations to new scenarios the robot
may still require variability in the training dataset D.
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For instance, if we train the robot to extract relevant
poses for just one location of the coffee cup, it may not
be able to accurately determine the poses of the coffee
cup in new test configurations.

Fortunately, having instruments for explaining hu-
man reasoning enables the robot to cheaply train the
causal network without needing more human demon-
strations. When feasible, the robot collects additional
language prompts [ and relevant features b for new task
instances that are outside the initial demonstrations,
and stores it with the observations (y,b,1) € Dpiay-
Note that this is an optional step and does not re-
quire humans to demonstrate what actions to take. The
play data Dy, only includes information of the rele-
vant objects and poses (i.e., the why). We combine this
play data with the training data D to create an aug-
mented dataset Deqysat = DUDpiqy, and use it to train
the causal network by minimizing both Leypiiciz and
Lecausal- We do not use Dpqy to train the feature net-
works or the policy transformer.

In summary, our proposed algorithm leverages
markers and verbal prompts to bootstrap the learning
process and mitigate causal confusion. Both types of hu-
man inputs contribute to improving the robot’s under-
standing of the human’s underlying features, resulting
in a compact representation of the robot’s visual obser-
vations. In the next two sections, we demonstrate the
significance of each input and compare CIVIL to state-
of-the-art baselines for offline visual imitation learning.

5 Simulations

We start by evaluating CIVIL on simulated tasks. Our
goal is to test whether the proposed algorithm improves
learning efficiency and reduces causal confusion by help-
ing robots align their feature representations with those
of a human expert. Across multiple simulated tasks,
we compare performance between CIVIL and state-
of-the-art baselines for contexts within and outside of
the training distribution. Unlike CIVIL, these baselines
learn feature embeddings through self-supervised trans-
formations of the robot’s images, segmenting known
objects, or using pre-trained vision-language features.
Below we describe these baselines in more detail:

— Behavior cloning (BC) [22]: A standard imitation
learning approach. BC learns to encode camera im-
ages and map them to robot actions by only training
the policy based on the human’s demonstrated ac-
tions. This approach forces the robot to implicitly
infer the task-relevant features.

— Self-Supervised Features (BYOL) [17): A self-
supervised framework that learns image representa-

tions by mapping different views to the same feature
encoding. The alternative views are generated using
transformations such as random cropping, flipping,
and color jittering. BYOL learns visual features that
are not supervised to align with the human’s inten-
tion. In our experiments we pre-trained a BYOL
encoder on the images in the training data as well
as the play data, froze it, and then used its self-
supervised features to train the downstream policy.
Object-Oriented Features (VIOLA) [60]: An ap-
proach that encodes images by focusing on objects
in the scene. VIOLA uses a pre-trained Region Pro-
posal Network (RPN) [13] to obtain bounding boxes
for k observed objects and then extracts object-
specific features. In our simulations we provided VI-
OLA with perfect detection by giving it the ground-
truth bounding boxes of all objects in the environ-
ment. We then randomly selected & = 5 of these
objects to extract object features as in the original
implementation. We ensure that these objects in-
clude the task-relevant item. By segmenting known
objects, VIOLA learns to ignore background varia-
tions. However, the robot still needs to figure out
which of the k objects are relevant by training the
features and downstream policy to imitate human
actions in an end-to-end manner. Note that — un-
like our approach — VIOLA requires access to the
object bounding boxes even during testing.
Task-Specific Object Features (Task-VIOLA) [59]:
This approach is a variation of VIOLA that enables
human teachers to indicate the desired objects by
scribbling on the robot’s images. The robot then ob-
tains point clouds of the annotated objects from its
depth camera, and extracts features by training the
downstream policy to imitate human actions. We re-
place object point clouds with image segmentations
for a fair comparison with other methods that only
use RGB images. Note that (similar to VIOLA) this
approach also requires a pre-trained vision-language
model during test time to segment the objects.
Vision-Language Features (CLIP) [10]: The meth-
ods discussed so far only derive features from visual
inputs. We now include a baseline that learns from
both images and language prompts. Specifically,
we use a CLIP encoder that associates visual con-
cepts with their text descriptions by mapping both
inputs to the same feature space. CLIP features
trained on large text-image datasets are general-
purpose and may not directly apply to downstream
robot tasks [42]. Therefore, we take a pre-trained
ResNet-based CLIP encoder RN50x4 and fine-tune
it for our simulation tasks by adding top and bot-
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tom adapter layers and then training them with the
robot policy as in [18].

Unlike these baselines our CIVIL approach lever-
ages human inputs from the demonstration process to
supervise a causal feature embedding. In contrast to
Task-VIOLA — which lets humans mark relevant ob-
jects on a computer screen — CIVIL does not need a
pre-trained model to segment the objects at run time.

Simulation Environment. We trained and evaluated
all methods on three tasks within the CALVIN environ-
ment [31] shown in Figure 4. This 3D environment in-
cludes a 7-DOF Franka Emika Panda robot arm, three
differently colored cubes on a workbench, a sliding door,
a drawer, a light bulb operated with a control switch,
and an LED controlled with a button. We randomly ini-
tialize these elements during data collection and eval-
uation. The demonstrations are either simulated using
a pre-trained expert policy [44] or manually collected
by an expert teacher. We also had the human expert
specify the relevant objects and obtained ground-truth
poses of these objects from the simulation environment.

Tasks. We evaluated the methods on the following
three tasks in CALVIN (see Figure 4):

1. Picking. The robot reaches a red block placed ran-
domly on the table, grasps it, and lifts it to a prede-
fined height. This task tests whether the robot can
learn features that encode the position of the block
and generalize the picking motion to new block posi-
tions. In the training scenarios, we initialize the red
block in a random position on the left or right side
of the table (but not in the middle). By contrast, the
testing scenarios include block positions across the
entire table. Here CIVIL measures the pose of the
red block during training; accordingly, we expect it
to understand that the red block is a key feature,
and extrapolate to new block positions at test time.
Task-relevant objects: red block
Marker information: red block position and orien-
tation

2. Sliding. The robot arm chooses its behavior based
on the state of the light bulb. If the light is on,
the robot opens a drawer. If the light is off, the
robot instead moves a sliding door. This task tests
whether the robot can implicitly extract relevant
features that cannot be conveyed directly by po-
sitional markers (e.g., whether the light is on or
off). Our approach receives language prompts that
mention the bulb, and leverages these prompts to
mask out everything but the relevant objects from
its images. We therefore expect CIVIL to learn the
task more efficiently than all baselines except Task-

Task 1: Picking

Task 2: Sliding

Task 3: Stacking

Fig. 4 Manipulation tasks in the CALVIN environment: (1)
Picking up a red block. The block is initialized on the left
or right side of the table during training. Some of the possi-
ble block positions are shown using transparent overlays. (2)
Opening the drawer or moving the sliding door based on the
light bulb state. The bulb is located in the top right corner
and appears yellow when on or white when off. (3) Stack-
ing on the blue or pink block based on the light bulb state
and block positions. The task starts with the red block in
the robot’s gripper and the blue and pink blocks in random
positions on the table. In all tasks, the irrelevant objects are
also initialized randomly.

VIOLA, which also receives the segmented image of
the light bulb.
Task-relevant objects: sliding door, drawer, light
bulb
Marker information: sliding door and drawer posi-
tion

3. Stacking. In this final task the robot starts with the
red block in its gripper and chooses where to place it
based on the state of the light bulb. If the light is on,
it stacks the red block on a blue block. If the light
is off, the red block is stacked on a pink block. The
positions of both the blue and pink blocks are initial-
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Fig. 5 Results from our ablation study. In Explicit the sys-
tem is trained on the position data of the marked objects,
and in Implicit the system is trained on the masked images.
CIVIL takes advantage of the human’s explicit and implicit
guidance. We find that both components contribute to the
overall effectiveness of CIVIL. Each policy is trained with
40 demonstrations.

ized randomly. This task tests whether the robot can
derive both color-based features (i.e., the light bulb
state) that must be implicitly learned from masked
images as well as positional features (e.g., the block
positions) that can be explicitly specified with mark-
ers. Overall, this task combines the challenges of the
first two tasks; hence we expect CIVIL to outper-
form all baselines because the human conveys both
relevant poses and objects while training.
Task-relevant objects: blue block, pink block, light
bulb

Marker information: blue and pink block poses

Demonstrations. At each timestep of a task demon-
stration we record an RGB image ey, of size 200 x 200
from a static camera that observes the entire manipu-
lation environment, an egocentric RGB image ycg, of
size 84 x 84 from a gripper-mounted camera, an 8-
dimensional robot state z, and a 7-dimensional end-
effector action u. The state includes 7 joint angles of
the robot arm and a Boolean gripper state. The ac-
tion is a 6-dimensional linear and angular velocity and
a Boolean gripper actuation. Additionally, we obtain
bounding boxes {B} for all objects in the simulation
environment and explicit features b in the form of 6-
dimensional Cartesian poses of relevant objects in that
task. Each method uses a combination of these inputs
to train the feature encoders and robot policy. For the
Picking and Stacking tasks, we collect an equal amount
of play data which includes images, bounding boxes,
and relevant poses in randomly initialized scenarios, but
it does not include robot states and expert actions.

Training. We train all methods for 500 epochs using
the Adam optimizer with a learning rate of 0.0001 and
a scheduler that decreases the rate by a factor of 0.5 ev-
ery 100 training epochs. Our batch size is 128. During
training, we leave out 10% of the training data and use
it as a validation set to evaluate the model after each
epoch. After training is complete, we save the model
instance with the lowest loss on the validation set. The
validation loss is the mean squared error (MSE) be-
tween the expert and model predicted actions.

Ablations. We compare CIVIL with two ablation vari-
ants in the simulation environment to evaluate how
the explicit and implicit feature modules contribute to
CIVIL’s overall performance (Figure 5). In the explicit-
only ablation training is restricted to the first phase,
where the policy loss Lpolicy is optimized using un-
masked image observations, and the explicit supervi-
sion loss Lexplicit is applied to marker data. By con-
trast, the implicit-only ablation trains the causal net-
work without incorporating Lexpiicit during the first
training phase. For each task, the policies are trained
using 40 demonstrations. Observations from the roll-
outs suggest that the visual markers are particularly
useful for recognizing and localizing the target object
when it is not yet directly visible in the gripper camera.
Policies trained with Lexpiicit tend to remain closer to
the desired trajectory during the early stages of a roll-
out. However, in tasks involving multiple relevant ob-
jects such as stacking, the explicit features require more
diverse play data to generalize effectively. The implicit
features are designed to capture color or 2-dimensional
segmentation patterns to complement the information
not represented in the 3-dimensional spatial coordi-
nates learned by explicit features. In practice, we found
that implicit-only ablations utilizing causal networks
learned richer representations from gripper images, en-
abling more precise stacking behaviors. Combining ex-
plicit and implicit features helps CIVIL achieves a high-
est success rate across all three tasks.

Results. Our results are summarized in Figure 6. Each
method is trained on datasets having 10, 20, 40, 80,
and 120 demonstrations. For statistical robustness, we
conduct 10 independent training and testing runs for
each method and dataset size. In each run, we test the
trained policy across 100 randomized task configura-
tions and report the average success rate.

Picking: For the picking task we found that our
CIVIL algorithm outperformed all baselines. A two-
way ANOVA test indicated significant main effects for
the choice of method (F(5,270) = 179.84, p < 0.001)
and the number of demonstrations (F'(4, 270) = 223.08,
p < 0.001) on the success rate. Post hoc comparisons
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Fig. 6 Section 5 results for visual imitation learning in the simulated CALVIN environment. We compare our proposed

approach (CIVIL) to standard behavior cloning (BC) and baselines that use self-supervised features (BYOL), object-specific
features (VIOLA and Task-VIOLA), or vision-language features (CLIP). In the Picking task we observe that CIVIL significantly
outperforms all baselines in picking up the red block from different positions across the table. Our approach is particularly
effective for block positions that are outside the training distribution (i.e., center of the table). This is likely because CIVIL
understands what aspects of the image should influence its policy, making the system robust to background clutter or shifting
positions. In the Sliding task, we find that CIVIL successfully learns to move the drawer or slider based on the state of the
light bulb in just 40 demonstrations. In contrast, baselines that use pre-trained features (BYOL and CLIP) are less precise in
detecting the light signal, which reduces their success rate. This suggests that CIVIL can also learn to extract non-positional
features (e.g., light bulb state) more efficiently by masking its images based on human-provided language prompts. Lastly, in
the Stacking task CIVIL leverages both markers and language to extract the positions of the pink and blue blocks as well as
the state of the light bulb. This enables the robot to stack the red block more successfully on either the pink or blue block,

resulting in a significantly higher success rate.

using Tukey’s HSD test found CIVIL to be significantly
more effective than the alternatives (p < 0.01).

To explore why our approach was more successful
than the baselines, we separately examined their per-
formance when the red block was initialized in posi-
tions similar to those in the training dataset (i.e., left
or right side of the table) and when the red block was
placed outside the training distribution (i.e., center of
the table). See Figure 6 (bottom). When trained with
120 demonstrations, CIVIL almost always picked up
the red block from the center of the table while the
baselines had less than a 20% success. The difference
between the methods was less pronounced when pick-
ing the red block from known regions of the table: for
these previously seen positions the baselines had a suc-
cess rate higher than 50%, while CIVIL grasped the
block in more than 80% of the configurations. Taken

together, these results suggest that the baselines may
have overfit to the training distribution, or learned poli-
cies that are correlated with the extraneous objects. By
contrast, CIVIL correctly understood why the human
teacher chose their actions, and learned a policy that
reached the red block despite environmental changes
and distribution shifts.

Sliding: In this second task the drawer and slider
locations are fixed across all task configurations. In-
stead of focusing on object positions, now the robot
needs to learn to condition its behavior on the state
of the light bulb (while ignoring distractors within
the scene). Here we observed that CIVIL successfully
learned the task after training on just 40 demonstra-
tions. The baselines, on the other hand, were unable
to achieve the same success rate. A two-way ANOVA
test indicated significant main effects for the choice of
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method (F(5,162) = 27.33, p < 0.001) and the dataset
size (F(2,162) = 19.79, p < 0.001) on task success.

We conducted pairwise comparisons to better un-
derstand the differences between methods. Both ap-
proaches that used pretrained features performed
poorly on this task. A Tukey’s HSD post-hoc test re-
vealed a significant difference in the performance of
CIVIL and BYOL (p < 0.001) and CIVIL and CLIP
(p < 0.001). We posit that CLIP underperformed
since it is pretrained on real images, which may not
adapt well to the simulated environment even after
fine-tuning. BYOL is trained on simulation images, but
learns features through self-supervision that may fail
to emphasize the task-specific light state. On the other
hand, the object-oriented approaches performed better
because they focused on a small set of objects includ-
ing the light bulb. Despite this advantage, both VIOLA
(p < 0.001) and Task-VIOLA (p < 0.05) achieved a sig-
nificantly lower success rate than CIVIL.

Surprisingly, we found that standard behavior
cloning performed well in this task. We attribute this
result to the small size of its feature space. While BC
only extracts one feature token for each camera, the
object-centric methods extract two tokens: global and
object-specific features. Following our analysis in Sec-
tion 3.1, a more compact feature space could enable BC
to learn more efficiently. Overall, this simulation result
illustrates that by masking images based on language
prompts CIVIL is able to extract non-positional fea-
tures that help it perform the task more successfully.

Stacking: Our final simulation combines the chal-
lenges from the first two tasks. Here we observed that
CIVIL achieved a significantly higher success rate than
all baselines. A two-way ANOVA revealed significant
main effects for method choice (F(5,270) = 80.31, p <
0.001) and demonstration count (F(4,270) = 163.8,
p < 0.001). Further, post hoc comparisons with Tukey’s
HSD test indicated that CIVIL was significantly more
effective than the baselines (p < 0.001). Since we used
the same policy architecture for all the methods, the dif-
ferences in their success rate were predominantly due to
the features they extracted. This indicates that CIVIL
captured both types of task-relevant features more ef-
fectively — the position of the block and the visual
state of the light bulb.

Takeaways. Our simulation results demonstrate that
in a cluttered environment with distracting visual ele-
ments, CIVIL consistently learns to perform the manip-
ulation tasks from fewer demonstrations as compared
to approaches that do not seek to align human and
robot representations directly. This highlights the ben-
efit of augmenting task demonstrations to convey not
just what actions to take but also how to decide on

those actions. Specifically, we found that using markers
to indicate relevant positions enables robots to general-
ize to new configurations, and using language prompts
to identify and mask-relevant objects enables robots to
efficiently learn tasks without being confused by irrele-
vant items.

What sets CIVIL apart are the additional human
inputs we collect as part of the demonstrations and
play data. Thus far we have shown the benefit of mark-
ers and language in a simulated setting and assumed
that these instruments are deployed by an expert. But
how useful are these inputs in real-world tasks, and can
these inputs be easily obtained from novice users? In
the following sections, we conduct real-world experi-
ments and user studies that evaluate whether the per-
formance of our approach holds in practical scenarios
where users have a limited time to collect data: placing
markers, providing verbal commands, and demonstrat-
ing the task.

6 Real-World Experiments

We now move to a real-world setting where the robot
arm performs manipulation tasks on a kitchen table.
Compared to the simulation environment, a real sce-
nario presents several challenges: the images are more
detailed (e.g., objects have shadows and textures as op-
posed to a solid color), there is a limited time to collect
demonstrations, and the robot may not be able to de-
tect markers and segment images perfectly (i.e., there
can be noise in the marker poses and bounding boxes).
Our goal is to test whether CIVIL can still be effective
in training robots with noisy inputs and limited data.
In this section we compare our approach to two vi-
sual imitation learning baselines: i) Task-VIOLA: the
method from our simulations that receives segmented
images of the task-relevant objects, and ii) FiLM [30]: a
vision-language baseline that uses language prompts to
condition its visual features with an affine transforma-
tion. We applied this approach instead of CLIP because
we found that the features obtained from a pre-trained
CLIP encoder did not work well in our real-world tasks
during initial testing. Unlike CLIP, FiLM requires lan-
guage prompts during both training and testing.

Experimental Setup. We evaluate these methods on
a 7-DOF Franka Emika Panda robot arm mounted on
a table. The robot uses two Logitech C920 webcams to
observe the environment: one serves as a static camera
that captures the entire scene, and the other functions
as an egocentric camera attached to the end effector
of the robot arm. We also use a microphone to record
verbal instructions during demonstrations. To indicate
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Fig. 7 Results for the real-world experiments in Section 6. We compare our proposed approach (CIVIL) to object-oriented
(Task-VIOLA) and language-conditioned (FiLM) approaches in four manipulation tasks: (1) cooking vegetables or meat, (2)
pressing a red button, (3) picking a cup, and (4) pulling a bowl to the center of the table. The top row shows examples of
training scenarios in each task. We highlight the task-relevant objects in green and one of the distracting objects with a red
boundary. During training, the position of the distracting object can be correlated with the relevant object, but this correlation
is not present during testing. Example test scenarios are shown in the second row, where the target object appears in an unseen
position (except in the cooking task, where the target is fixed). The bottom row shows the success rates of the robot arm.
We use a darker shade to denote success in seen scenarios and a lighter shade for unseen scenarios. The performance for all
approaches drops as the tasks become more complex. In our experiments, cooking was the easiest task as the pan was fixed,
while pulling was the most challenging because it involved two target-oriented subtasks, reaching the bowl and bringing it to
the center. CIVIL achieves a significantly higher success rate than the object-oriented and language-conditioned approaches

across all real-world tasks.

relevant poses, we use 3D-printed cubes with a width
of 20 millimeters as the physical markers. Five faces of
the cube have ArUco tags that uniquely identify that
marker, while the sixth face has a reusable adhesive. If
the robot detects more than one face of a marker, we
take the average of their positions.

Tasks. We evaluate the methods along four manipula-
tion tasks (also shown in Figure 7):

1. Cooking. The robot arm stirs or scoops the con-
tents of a pan with a spatula. If the pan has “meat,”
the robot scoops it. If the pan has “vegetables,” it
stirs them. We keep the pan in a fixed location on a
table and surround it with objects that can confuse
the robot. In particular, during training the robot
always sees a tomato can when stirring vegetables or
a sauce bottle when scooping meat. We test whether
the robot can ignore these background objects and
learn to act based only on what is in the pan.

2. Pressing. The robot presses a red button on a table
that has five cups of different colors. While training,
the button is placed on the left or right side of the
table, with the yellow cup always located behind
the button. During testing, the button can also be
in the center and may not be in front of the yellow

cup. We test if the robot can avoid being confused
by correlations with the yellow cup and push the
button regardless of its location.

. Picking. The robot picks up a cup from multiple

locations on the table. The robot also sees other ob-
jects like a bowl, a spam can, a pasta box, a bleach
bottle, and sugar packs. During training, we posi-
tion the cup on the right side or in the center of
the table with the bowl always in front of the cup.
However, the cup can be on the left side or at any
intermediate location during testing, and the bowl
may not be in front of it. As in the previous task,
we test whether the robot can avoid being confused
by the bowl and generalize to unseen cup positions.

. Pulling. The robot pulls a bowl to the center of the

table. During training, the bowl contains a plastic
eggplant and is always placed behind a plastic car-
rot. There are also other vegetables scattered on the
table. However, the eggplant can be in a different
container than the bowl during testing. Similar to
the previous task, the robot only sees the target ob-
ject (i.e., bowl) on the left or right side of the table
in the training data, but the testing scenarios also
include intermediate positions. We test if the robot
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can learn to focus only on the bowl and not its con-
tents, and generalize to new object positions.

Demonstrations The training demonstrations are
provided by an expert human using a Logitech joy-
stick. Before performing the task, the expert attaches
markers to the target objects. During each demonstra-
tion, the robot records the static and egocentric RGB
images Yenv, Yego Which are resized to 200 x 200, the
8-dimensional robot state  which includes 7 joint an-
gles and one binary gripper state, and a 8-dimensional
action u. The action is a 7-dimensional joint velocity
and a binary gripper action. The robot also tracks the
positions b of the markers with the static camera. How-
ever, the markers are not detected in every frame so we
only obtain marker poses for a subset of the images col-
lected during demonstrations. The demonstrator pro-
vides verbal instructions ! (e.g., scoop the meat or stir
the vegetables) which are recorded with a microphone
and then transcribed to text by a speech recognition
model [11]. We use an open-world video segmentation
model DEVA [13] to obtain bounding boxes {5} from
text prompts. Lastly, we in-paint the markers from the
images using OpenCV’s inpainting tools.

Results. Our results are summarized in Figure 7. We
trained the methods with 20 expert demonstrations in
each task except button pushing, for which we provided
10 demonstrations. We then tested the methods in sev-
eral scenarios that reasonably covered all distinct object
configurations in each task. Specifically, for tasks num-
bered 1 to 4, we had 40, 9, 16, and 24 test scenarios,
respectively. We measured success based on whether
the robot completed the intended task correctly. For
instance, if the robot gripper touched anywhere on the
button in the pressing task, it was recorded as a success.
But if the robot missed the button, it was a failure. The
success rates are averaged over 3 training and evalua-
tion runs.

We test on both seen and unseen scenarios. Here
we clarify that positions of the irrelevant objects are
randomized during testing, and thus no test scenario
is exactly the same as a training example. Seen there-
fore refers to contexts where the relevant object (e.g.,
the button) is in a region of the table where the robot
had observed that object at least once during training,
while unseen refers to the relevant object being in a
completely new region.

The real robot arm performed the tasks more suc-
cessfully when trained using CIVIL than with the
object-oriented or language-conditioned baselines. Our
approach performed particularly well in unseen test sce-
narios, indicating that the robot learned to semanti-
cally map the its images into task-relevant and human-

aligned features. This result again highlights the ben-
efit of intuitively supervising the robot’s features with
markers and language, and shows that CIVIL can work
well even in real settings where the markers may not
be detected at every timestep. However, contrary to
our expectations, FiLM performed considerably better
than Task-VIOLA. Most surprisingly, despite having
segmented images of the target object, Task-VIOLA
had a less than 15% success rate across all tasks. We
suppose the following two reasons for its poor perfor-
mance. First, in addition to the object-specific features,
Task-VIOLA also extracts global features from the un-
segmented image that can contain irrelevant informa-
tion. As a result, the policy must learn to discard this
information implicitly, which is challenging to do given
just 20 demonstrations. Second, Task-VIOLA requires
an online object-segmentation approach that may not
work perfectly in practice. We found that while it was
possible to obtain accurate bounding boxes during the
offline training, the robot failed to detect the objects
online, especially when they came into contact with the
robot’s gripper. On the other hand, CIVIL only requires
object masks during training and thus does not face the
same challenge with online image segmentation.

Overall, our real-world experiments show that given
the same number of demonstrations, robots can learn
the task more efficiently when supported with markers
that specify relevant poses and language prompts that
mention relevant objects. However, in practical settings,
users may have limited time to provide both demonstra-
tions and the additional inputs. The time required to
attach markers and give play data may therefore reduce
the number of demonstrations that users can collect.
Another factor is that our experiments involved expert
teachers who were familiar with placing the markers
and giving verbal commands while teleoperating the
robot. In the next section, we present a user study that
explores whether novice users can do the same under
fixed time constraints.

7 User Study

Now that we have evaluated our algorithm in simulated
and real-world tasks with examples provided by a hu-
man expert, we will assess whether it is also easy for ev-
eryday humans to convey their reasoning while demon-
strating the task. Specifically, we conduct a study to
determine if users can intuitively place markers and
seamlessly issue language prompts without impacting
the quality of their demonstrations. We acknowledge
that deploying these inputs requires additional time,
which may reduce the time left for users to provide
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examples. Hence, we also evaluate whether our high-
level insight of communicating the key features (why)
along with the demonstrations (what) is practically ad-
vantageous when users have a fixed amount of time to
teach the robot. We compare our approach to the be-
havior cloning (BC) baseline introduced in simulations.
The difference between these methods captures our pro-
posed re-framing of imitation learning: BC learns only
from what the human does, while CIVIL enables the hu-
man to also convey why they are showing those actions
(i.e., the human conveys which robot and environment
features their policy depends upon).

Experimental Setup and Task. We use the same
robot arm and camera setup as in our real-world ex-
periments but choose a new task, Placing, for the user
study (see Figure 8). In this task the robot has to pick
up a cup and place it under a coffee machine. The cup
is always initialized in the same position while the ma-
chine can be moved along the edge of the table. There
are three other objects randomly placed on the table: a
coffee pod, a sugar box, and a coffee jar. During train-
ing the coffee machine only appears in two positions:
the nearest and farthest locations along the edge, but
during testing it can also be at intermediate locations.

Participants and Procedure. We recruited 10 par-
ticipants (1 female, average age 24.4+3.7) from Virginia
Tech’s student population. Participants received mone-
tary compensation for their time and provided informed
written consent according to university guidelines (IRB
#23-1237).

At the beginning of the study we showed partici-
pants a video of an expert demonstration and gave them
5 minutes to practice teleoperating the robot using the
joystick. During this practice session we also instructed
participants on how to attach markers and give lan-
guage prompts. In particular, we told users that mark-
ers should be attached to objects of interest such that
they are visible to the robot’s camera. Our study fol-
lowed a within-subjects design where participants pro-
vided data in two rounds, once with markers and lan-
guage, and once without the additional inputs. In each
round, users had 5 total minutes to provide as many
demonstrations as possible. This included the time re-
quired to place markers and collect any play data. It is
important to note that the markers only need to be at-
tached once at the beginning of one round, and they can
remain in place throughout all subsequent demonstra-
tions. Therefore, attaching the markers does not add
significantly to the total time required or the human
effort involved. After the trials participants answered a
survey (see Table 1) to rate their teaching experiences.
We counterbalanced the order so that half of the par-

Table 1 Survey with two 7-point Likert scales for assessing
the intuitiveness of using markers and language, and the ease
of incorporating these inputs alongside task demonstrations.

Intuitive:

- Using markers and language feels intuitive and makes sense.

- Using markers and language does not seem intuitive to me.

- I understand where to place the markers to help the robot learn.

- I do not understand where I should place the markers.

- I know what verbal instructions will help the robot learn.

- I am unsure what verbal instruction would help the robot learn.
Seamless:

- The markers did not interfere while I was performing the task.

- The markers got in my way when I was trying to perform the task.

- Speaking verbal instructions while giving demonstrations did not
interfere with my ability to perform the task effectively.

- I was unable to provide effective and accurate demonstrations
because I had to give verbal instructions at the same time.

ticipants worked with CIVIL first, and the other half
started with BC.

Dependent Variables. To assess the ease of deploy-
ing our approach we consider two subjective attributes:
Intuitive and Seamless. We measure these attributes
through the 7-point Likert scale survey shown in Ta-
ble 1. Users respond to each item in this survey with
an agreement rating from 1 to 7, where 1 is strongly
disagree and 7 is strongly agree. Higher ratings indi-
cate participants found it intuitive to use markers and
language, and they could seamlessly integrate these in-
puts into their demonstrations. We evaluate the robot’s
objective performance through the success rate of the
learned policy.

Hypothesis. We made the following hypothesis:

H1. Users will find teaching robots with CIVIL
(i.e., showing demonstrations with markers and
language) to be just as intuitive and seamless as
providing demonstrations for standard BC.

H2. Given the same amount of training time,
robots using CIVIL will perform the task more
successfully than robots with standard BC.

Training and Testing. In a time window of 5 min-
utes users provided an average of ~11 demonstrations
without any additional inputs, and ~9 demonstrations
when also working with markers and language. We ag-
gregated the data provided by users into two datasets: i)
Dpce which includes the states z, images y, and actions
u from the baseline round, and ii) Dgoryrr which in-
cludes marker readings b and language prompts [ along
with the (z,y,u) samples from our proposed round. We
also processed the user’s language commands to extract
the relevant objects. Specifically, we computed the co-
sine similarity between the text transcribed by Whis-
per [41] and a pre-defined library containing descrip-
tions for all objects in the environment. For example,
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Fig. 8 User study results from Section 7. (Left) Subjective ratings on a 7-point Likert scale, where higher values indicate
agreement with the statements in Table 1. Users subjectively perceived the process of placing markers and explaining actions
to be intuitive. Users also reported that they were able to seamlessly include these additional steps into their teaching process.
(Middle) Objectively, augmenting the demonstrations with feature supervision (CIVIL) led to a significantly better performance
than simply providing more action demonstrations to the robot (BC). Here we use a darker shade to denote success in releasing
the cup without accidentally toppling it over. (Right) We show an example rollout of both approaches. In this example CIVIL
accurately takes the cup to the coffee machine after picking it up, while BC mistakenly takes the cup to the wrong location.

“coffee machine” and “black Keurig” were mapped to
“black coffee maker”.

For testing, we first randomly sampled 15 demon-
strations from Dp¢ and 13 from Doy, — amounting
to 7 minutes of data — to train the respective methods.
We then rolled out the trained models in 9 scenarios,
which included 6 configurations where the coffee ma-
chine was near the closest or farthest point along the
table, and 3 contexts where the coffee machine was in an
unseen center position. Other objects were positioned
randomly in each scenario. We averaged our final results
over 3 end-to-end runs.

Results. Figure 8 summarizes our study outcomes.
Overall, users reported that they found it intuitive
to deploy markers and speak language commands while
teleoperating the robot. To evaluate their subjective re-
sponses, we combined ratings for the survey questions
into two scores: one for intuitive and one for seam-
less. T-tests indicated that the average user scores for
the Intuitive (t(9) = 12.99, p < 0.001) and Seam-
less (t(9) = 4.34, p < 0.001) scales were significantly
higher than the neutral score of 4. We note that we did
not physically show users how to attach markers; we
only gave them verbal instructions during the practice
round. Therefore, this result indicates that it was easy
for users to understand, remember, and implement our
data collection procedure. It also supports our hypothe-
ses H1. However, we caveat this result with the aware-
ness that 8 of our 10 participants stated they had pre-
viously interacted with robots, which may have helped
them comprehend how robots learn from visual obser-
vations and provide more informed training data.
Given that users understand how to use markers
and language, we now explore whether it is worthwhile

for them to invest time in providing these inputs when
demonstrating the task. We observed that robots that
were trained with CIVIL learned to grasp the cup and
bring it to the coffee machine with a success rate higher
than 77% (see the right side of Figure 8). By contrast,
the BC baseline’s success rate was about 40%, despite
receiving more demonstrations than CIVIL. This sug-
gests that robots trained without knowledge of the key
task features may not realize the human’s intent and
can be causally confused by the random placement of
surrounding clutter in the test scenarios. It also sup-
ports our hypothesis H2 and highlights the advantage
of a human teacher who conveys the key features (why
to do it) instead of simply providing more demonstra-
tions of their desired behavior (what to do).

Lastly, when taking a closer look at where our ap-
proach was superior to standard behavior cloning, we
found that CIVIL was significantly more successful in
picking up and releasing the cup than BC. For instance,
the robot failed to pick up the cup in only 15% of
the test scenarios when using CIVIL, compared to 48%
when trained with BC. Also, when the robot did man-
age to pick the cup and take it to the coffee machine,
CIVIL was 30% more successful than BC in releas-
ing the cup and moving out without knocking it over.
Both these instances represent key states in the task
where the robot needs to be the most accurate. This
is where training with marker readings helps CIVIL to
be more precise than conventional approaches that rely
on the robot to extract such positional features with-
out any human guidance. We also hypothesize that the
expressiveness of natural language commands helped
non-expert users. When the robot purely learns from
motion demonstrations, any errors in these movements
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can lead to confusion. But when the robot reasons over
the associated language and markers, CIVIL enables
the robot to correctly parse the relevant features, even
if the human’s motions are imperfect.

In summary, our user study underscores that CIVIL
enhances robot learning not by obtaining more data
from humans but by providing context to their data. We
find that CIVIL can significantly improve the robot’s
ability to learn and generalize to new tasks with only a
few context-rich demonstrations.

8 Conclusion

In this paper we tackle the problem of causal confusion
in visual imitation learning by proposing a fundamental
shift in the way humans provide demonstrations, and
then leveraging that augmented data to explain the hu-
man’s actions. Given just action demonstrations and
high-dimensional visual observations, robots can strug-
gle to autonomously extract the correct feature repre-
sentations. Without these representations, we analyti-
cally and experimentally show that robots may learn
to condition their policies on extraneous or spuriously-
correlated data, leading to out-of-distribution failures.
To address this challenge, we propose that humans sup-
plement their action demonstrations with additional
cues that reveal their decision-making process. Specifi-
cally, we enable humans to deploy physical markers and
utter natural language instructions to intuitively con-
vey task-relevant positions and objects that form part
of the desired feature representation.

Our main technical contribution is a visual imitation
algorithm, CIVIL, that leverages the verbal prompts
to mask unnecessary details from the robot’s images
and the physical markers to extract a compact fea-
ture representation that encodes relevant positional in-
formation. Our simulations and real-world experiments
demonstrate that when we use these features to train
the robot’s policy it learns the task more efficiently, re-
quiring fewer demonstrations than existing approaches.
CIVIL also enables robots to generalize to new task
configurations that are outside the training distribu-
tion, indicating that the robot learns features that effec-
tively capture human reasoning. A distinct advantage
of CIVIL is that the robot does not need markers, lan-
guage instructions, or pretrained vision models at run
time when it autonomously performing the task.

Limitations and Future Work. This work is a step
towards maximizing what robots can learn from hu-
man examples. However, our current approach has some
limitations. For instance, we rely on humans to mark
or mention the relevant objects. This may lead to er-

rors when teaching tasks that contain several relevant
components — humans could forget an essential ob-
ject or mistakenly mention an irrelevant object. Future
work should account for such potential human errors
to prevent the robot from learning incomplete or non-
causal representations. A possible way to mitigate this
issue would be to actively remind and interact with
users throughout the demonstration process. Another
limitation of our work is that we only use verbal com-
mands to identify the task-relevant objects. However,
human instructions often contain additional insights
such as qualitative descriptions of the demonstrated ac-
tion (e.g., “go straight to” or “place carefully under”).
Leveraging these latent signals can help robots make
full use of the human’s inputs and further accelerate
the learning process.
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