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Abstract Today’s robots attempt to learn new tasks

by imitating human examples. These robots watch the

human complete the task, and then try to match the

actions taken by the human expert. However, this stan-

dard approach to visual imitation learning is funda-

mentally limited: the robot observes what the human

does, but not why the human chooses those behav-

iors. Without understanding which features of the sys-

tem or environment factor into the human’s decisions,

robot learners often misinterpret the human’s examples

(e.g., the robot incorrectly thinks the human picked

up a coffee cup because of the color of clutter in the

background). In practice, this results in causal confu-

sion, inefficient learning, and robot policies that fail

when the environment changes. We therefore propose

a shift in perspective: instead of asking human teach-

ers just to show what actions the robot should take,

we also enable humans to intuitively indicate why they

made those decisions (i.e., what features are critical for

the desired task). Under our paradigm human teachers

attach markers to task-relevant objects and use nat-

ural language prompts to describe their state repre-

sentation. Our proposed algorithm, CIVIL, leverages

this augmented demonstration data to filter the robot’s

visual observations and extract a feature representa-

tion that aligns with the human teacher. CIVIL then

applies these causal features to train a transformer-

based policy that — when tested on the robot — is

able to emulate human behaviors without being con-
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fused by visual distractors or irrelevant items. Our sim-

ulations and real-world experiments demonstrate that

robots trained with CIVIL learn both what actions to

take and why to take those actions, resulting in bet-

ter performance than state-of-the-art baselines. From

the human’s perspective, our user study reveals that

this new training paradigm actually reduces the to-

tal time required for the robot to learn the task, and

also improves the robot’s performance in previously

unseen scenarios. See videos at our project website:

https://civil2025.github.io
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sentation, Few-Shot Learning

1 Introduction

Imitation learning enables robots to learn new tasks by

emulating the actions of a human expert. Consider a hu-

man teaching their robot arm to serve coffee (as shown

in Figure 1). The human guides the robot through dif-

ferent stages of the task, including picking a cup off the

kitchen counter and placing it under the coffee machine.

To learn this task, the robot observes the scene with an

onboard camera and records the actions demonstrated

by the human teacher. But these visual demonstrations

only show the robot what it should do, leaving the robot

to figure out why it should perform these actions (i.e.,

what aspects of the system and environment states fac-

tored into the human’s decisions).

Understanding the state representation behind the

human’s actions is critical for adapting to new situa-

tions. For example, humans know that the coffee cup’s

position affects how it should be grasped; if the cup

moves, humans will change their actions to match its

new configuration. However, it is difficult for robots

https://civil2025.github.io
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to infer this underlying feature solely from the demon-

strated actions because their visual observations often

contain excess information — along with the cup, the

robot’s camera also sees other utensils and appliances

on the kitchen counter. These irrelevant details can cre-

ate causal confusion when they are correlated with the

human’s actions [14]. For instance, if the cup is al-

ways next to a bowl during the demonstrations, the

robot may not understand the human’s motive; should

it reach for the cup or go to a position beside the bowl?

Put another way — what features of the observed state

are connected to the task, and which features are irrel-

evant clutter or spurious correlations?

Existing research has focused on enabling robots to

resolve this confusion on their own by making assump-

tions about task-relevant information. Current imita-

tion learning methods try to extract the relevant de-

tails from the robot’s observations by augmenting the

data with random transformations [35,25], identify-

ing known objects in the scene [60], or using vision-

language models pretrained on large datasets [48,56].

While these approaches help robots adapt their actions

to expected variations of the task, they require a sig-

nificant amount of data to truly uncover the human’s

reasoning. For example, when we experimentally ap-

plied these baselines to the task in Figure 1, we found

that the robot may incorrectly learn to focus on the

bowl (instead of the coffee cup) because of misleading

correlations in the training data. This leads to robots

that cannot make coffee when the bowl is removed.

To address this fundamental limitation we here re-

frame the process of learning from human demonstra-

tions. Rather than expecting robots to infer the cor-

rect causality based solely on human actions, we now

extend imitation learning so that human teachers can

intuitively reveal what actions to take and why to take

those actions (i.e., what environment features guided

the human’s demonstrations). Our hypothesis is:

Robots can learn more effectively when the human

provides a smaller number of demonstrations while

communicating the key features behind their actions.

We apply this hypothesis to create interfaces that hu-

mans can leverage to convey state representations dur-

ing their demonstrations. Specifically, we use a combi-

nation of physical markers and language instructions to

give context to human demonstrations. Human teach-

ers place markers in the environment to highlight rel-

evant objects, positions, and interactions that inform

their actions (i.e., the human in Figure 1 might mark

the coffee cup and coffee machine). Similarly, the hu-

man can provide natural language utterances to explain

what they are doing or what they are focusing on dur-

ing their demonstration (i.e., “pick up the cup”). The

robot learner collects the demonstrated state and ac-

tions — as in traditional approaches — along with the

new marker positions and language prompts.

These augmented demonstrations provide the robot

with a more holistic understanding of the task and sup-

plement its learning in two ways. First, the robot lever-

ages the marker and language cues to filter its extrane-

ous observations and extract a low-dimensional feature

representation that encodes human reasoning. Second,

the robot learns a policy that maps these causal fea-

tures to the demonstrated actions while remaining ro-

bust to unintended correlations and irrelevant visual

data. We refer to our resulting algorithm as CIVIL:

Causal and Intuitive Visual Imitation Learning. Us-

ing CIVIL, humans can provide the robot with labeled

data about the system and environment features (why)

that guided their demonstrationed actions (what). Our

results reveal that users perceive this immersive teach-

ing protocol to be more intuitive and natural (i.e., how

humans would teach other humans). We also empha-

size that gathering the additional marker and language

data does not increase the overall teaching burden: in-

stead, we find that users require fewer demonstrations

and less total time to train the robot, and the resulting

robot policy is more robust to new scenarios.

This work is a step towards robots that are able to

correctly understand and perform tasks based on a few

human demonstrations. Overall, we make the following

contributions1:

Analyzing Challenges in Visual Imitation Learn-

ing. We show why it is fundamentally challenging for

robots to learn from high-dimensional and redundant

observations, such as images from the robot’s camera.

Using linear regression analysis, we first prove that hu-

mans must provide exponentially more examples as the

dimensionality of observations increases. We then illus-

trate why robots struggle to infer the human’s reason-

ing and generalize to new scenarios when their obser-

vations contain spurious correlations.

Introducing CIVIL. To address these fundamental

challenges, we enable humans to demonstrate tasks

while also explaining their actions with physical mark-

ers and language instructions. We present our CIVIL

algorithm that leverages these inputs to train robots

that i) extract causal features from their observations

1 A preliminary version of this work was published at the
IEEE International Conference on Intelligent Robots and Sys-
tems [45]. As compared to [45], this manuscript i) provides
theoretical analysis justifying our proposed demonstration
paradigm, ii) develops an end-to-end vision and language
network that extracts causal features from human guidance,
and iii) compares CIVIL to state-of-the-art alternatives while
evaluating how humans interact with CIVIL.
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Fig. 1 Human teaching a robot arm to prepare a cup of coffee. The robot must learn to grasp the cup and place it under
a coffee machine based on visual observations. Within traditional approaches the human demonstrates what actions to take,
and the robot learns to emulate these demonstrated actions. However, this approach is inefficient because the robot is not
taught why the human chooses a specific behavior (i.e., what features of the environment factored into the human’s decisions).
Without this causal information that links features to actions the robot can misinterpret the human: for instance, if a bowl is
always placed to the left of the cup during the demonstrations, the robot might learn to go beside the bowl instead of go to the
cup. We hypothesize that robots can learn more efficient and robust control policies when the human teacher communicates
the features behind their decisions (i.e., why they are choosing the actions they demonstrate). CIVIL shifts imitation learning
towards holistic demonstrations with physical markers and natural language instructions.

and then ii) map those features to task actions. Im-

portantly, we only require markers and language com-

mands during training. Once trained, the robot can per-

form the task autonomously without any supervision.

Comparing to State-of-the-Art Alternatives. We

compare robots that act on the human-supervised fea-

tures of CIVIL against multiple state-of-the-art base-

lines that let robots derive causality through self-

supervision [35], object detection [60], and pre-trained

vision-language models [40]. Our experiments include

simulations in CALVIN [31], a benchmark for learning

manipulation tasks, as well as real-world experiments

with Franka robot arms. Robots trained on CIVIL are

more successful in performing the tasks than the base-

lines, especially when tested on unseen task instances.

Evaluating with Real Users. We conduct experi-

ments where real users leverage our CIVIL protocol to

train the robot arm. We focus on the user’s subjec-

tive perception of the demonstration process, as well

as the robot’s objective performance when trained on

user data. Our results suggest that users find it easy

and intuitive to leverage markers and language during

demonstrations, and — when giving the same amount

of time for providing demonstrations — robots trained

with CIVIL learn to perform the task more proficiently.

2 Related Work

Our work explores visual imitation learning for robot

manipulation tasks. Below we summarize this field,

while focusing on existing methods that enable the hu-

man teacher to augment their demonstrations.

2.1 Visual Imitation Learning

When imitating humans, the robot learns a policy that

maps its observations to the actions demonstrated by

a human expert. We expect robots to learn this expert

policy from a few demonstrations and then transfer it to

other, potentially unseen variations of the task [34,29].

But when the observations are high-dimensional and

contain extraneous information, it can be difficult for

robots to infer which parts of these observations actu-

ally affect the task performance [14]. For example, the

robot in Figure 1 may not know which objects to focus

on when making coffee on a cluttered kitchen counter.

To resolve this confusion, robots can encode their

observations into a low-dimensional feature representa-

tion that only retains essential information — such as

the position of the cup — and ignores irrelevant de-

tails like lighting changes and background objects [55].

Existing approaches let robots derive these features on

their own by making assumptions about the extraneous

aspects [35,42,37,48], or simply focusing on the known

objects in the scene [38,60,24].

For instance, the robot can generate alternative

views of the images taken from its camera by apply-

ing transformations like color distortions and random

cropping [12,17,20], and then train an encoder to map

these transformed views into the same features as the

original, unmodified images. This helps the robot learn

a feature representation that is invariant to noisy trans-

formations. Alternatively, the robot can use existing vi-

sion models to detect known objects in its view and

train its policy on features derived from the segmented

images of these objects [60]. This approach encourages
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the robot to disregard background details like the ap-

pearance of the kitchen or the lighting of the room.

While these unsupervised approaches make the

robot robust to distractors like lighting and back-

ground, they rely on the robot to implicitly infer the

relevant features (e.g., the cup’s position) from human

demonstrations. This slows the learning process — hu-

mans need to provide demonstrations in diverse scenar-

ios to facilitate causal inference [4] — and can also be

counterproductive when the assumed variations deviate

from the human’s reasoning [17]. For example, if a user

wants the robot to interact with objects of a specific

color or focus on some background cues, training with

images that vary in color or exclude the background

can further confuse the robot.

Hence, in this work we enable humans to explicitly

convey their underlying feature representations to the

robot. We anticipate that communicating the reason-

ing behind human actions will mitigate causal confu-

sion and accelerate learning. Accordingly, we next dis-

cuss prior works that have explored how humans can

intuitively reveal their intentions to robot learners.

2.2 Learning Human Representations

Robots can learn more efficiently and generalize bet-

ter to unseen scenarios when their representations are

aligned with human reasoning [6]. To achieve this align-

ment, humans need to share further insights into their

decision-making while demonstrating the task. Earlier

works have proposed obtaining representations by ask-

ing humans to select the task-relevant factors from a

pre-defined list [10,3,32], label the features for exam-

ples in the training data [51,47], and provide demon-

strations that trace the gradient of a relevant feature [7].

However, these approaches are either cognitively de-

manding because users find it difficult to quantify fea-

ture values [26], or physically taxing due to the need

for additional feature-specific demonstrations. To feasi-

bly obtain this information in practice, it is important

to leverage natural and intuitive communication chan-

nels that can be seamlessly integrated into the robot’s

training process [18]. Therefore, recent work has fo-

cused on pairing demonstrations with natural language

prompts [48,30,23,58,28,8,52,56], and introducing in-

tuitive sensors and interfaces to collect additional hu-

man inputs [50,57,49,54,39,27,46,5,33].

Humans can organically explain their actions us-

ing natural language. For example, when demonstrating

how to make coffee, users may say “pick up the cup”

and then “place it under the coffee machine.” Prior

works have shown that robots can utilize these prompts

to improve their representations in multiple ways. Many

previous approaches encode language descriptions into

feature vectors and pair them with visual features to

provide more context for the robot’s policy [30,23,58,

28,8,52]. Some works use language to supervise how

features are extracted from robot observations by using

contrastive learning, as in CLIP [40], or by condition-

ing their visual encoder [25]. Lastly, instead of learning

the features from scratch, we can take pretrained vision-

language models and fine-tune them on demonstrations

of the task [48,56]. In our work, instead of using lan-

guage to contextualize the robot’s features or policy, we

leverage language to filter the robot’s observations —

highlighting relevant objects in the scene and removing

irrelevant details that can confuse the learner.

Although humans can explain parts of their think-

ing using natural language, not every aspect of a task

can be easily put into words, e.g., subconscious visual

cues or complex motion constraints. Such details can

be communicated more intuitively through specialized

instruments. For instance, humans can cheaply con-

vey rich motion information using hand-held grasping

tools [50,57], optical trackers [49], and wearable tac-

tile gloves [54]. Humans can also utilize augmented re-

ality interfaces to specify keyframes and motion con-

straints [39,27]. Alternatively, the robot can track hu-

man gaze and focus on the same regions of its observa-

tions as the expert user [46,5]. We explored this option

in our preliminary work [45], where humans used Blue-

tooth sensors to locate relevant objects in the environ-

ment; similarly, [59] introduced an interface for humans

to mark these objects on images of the scene [59]. How-

ever, we find that physical markers alone are not suffi-

cient to capture critical features. These markers might

indicate where the robot should focus (e.g., “look at

the light bulb”), but not what aspects to focus on (e.g.,

“check if the light is on or off”).

Our work finds a balance between instrumented and

natural human inputs. We use a combination of phys-

ical markers and language descriptions to specify rel-

evant poses and objects that humans consider when

taking actions. Our approach leverages these inputs to

encode the robot’s visual observations into a feature

representation that is aligned with human reasoning.

Unlike previous approaches, we only require additional

inputs during training. Once the robot learns the cor-

rect representation, it can autonomously perform new

variations of the task without needing markers or lan-

guage prompts.

3 Problem Statement

We consider settings where a robot arm is learning a

task from human demonstrations. When teaching a new
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task, the human teleoperates or kinesthetically moves

the arm through a few instances of that task. For exam-

ple, the human may show how a coffee cup can be picked

up from different locations on the kitchen counter.

Robot. As the human demonstrates the task, the robot

records its states x ∈ Rm (e.g., joint angles), actions

u ∈ Rm (e.g., joint velocities), and observations y ∈ Rn
(e.g., images taken from onboard and static cameras).

While x only represents the arm’s proprioceptive state,

y also captures information about the surrounding en-

vironment. Overall, the human provides a dataset D

of (x, y, u) tuples. The robot’s goal is to leverage this

dataset to learn a control policy πθ that maps the states

x and observations y to the demonstrated actions u:

πθ(x, y) = u ∀(x, y, u) ∈ D (1)

The policy parameters θ determine what actions the

robot chooses for a given state and observation.

Features. The robot’s observations are high-

dimensional and contain both relevant information for

learning the task and extraneous details that should be

ignored. For instance, along with the cup that we want

the robot to grasp, it could also see a bowl and other

kitchen appliances on the counter. The robot does not

know which parts of these observations are relevant a

priori. We represent the task-relevant information as

a compact feature vector ϕ∗ ∈ Rd, where the feature

dimension d is less than the dimensionality n of the

observations. In our example, ϕ∗ contains the cup’s

position and orientation but excludes the bowl and

other irrelevant items on the kitchen counter. Our

work focuses on extracting the relevant features from

the human’s demonstrations so that we can map

high-dimensional states into compact feature vectors.

Human. Unlike the robot arm, humans know the task-

relevant aspects and can extract the associated features

from the high-dimensional observations through a fea-

ture function f .

fψ∗(x, y) = ϕ∗ (2)

The parameters ψ∗ determine how humans map the

complex observations to the relevant features. With-

out loss of generality, we assume that humans only act

based on these features (e.g., the human will not fo-

cus on the bowl’s position when reaching for the cup),

and so the human’s policy is a function of the relevant

features ϕ∗.

πθ∗(x, ϕ
∗) = u (3)

In the above θ∗ are the true parameters of the policy

that the human wants to teach the robot. Intuitively,

the policy parameters θ∗ dictate what actions the hu-

man will take and the features ϕ∗ determine why the

human chooses that action for a given robot state and

observation (i.e., ϕ∗ provides a feature state represen-

tation for the desired task).

Ideally, the control policy learned by the robot arm

should produce the same actions as the human expert.

In what follows, we discuss two key challenges in learn-

ing such a policy from visual observations given a lim-

ited amount of training data D. First, we highlight the

importance of encoding the robot’s observations into

low-dimensional features (similar to those of the human

expert) in order to improve learning efficiency. Second,

we illustrate why it is difficult for robots to learn poli-

cies that can generalize to new task instances when their

observations contain correlated visual elements.

3.1 Using Low-Dimensional Features to Accelerate

Learning

We first analyze the challenge of efficiently learning

from high-dimensional observations like RGB images.

More specifically, we show that the data required to

learn the task increases exponentially as we increase

the dimensionality of the inputs to the robot’s policy.

To formalize this problem, we consider a linear regres-

sion example where the robot has a dataset that con-

tains N samples of states x ∈ Rm, observations y ∈ Rn,
and demonstrated actions u ∈ Rm. We assume that the

robot encodes the states and observations into features

ϕ ∈ Rd using an encoder matrix Ψ ∈ R(m+n)×d:

Φ = [XY ]Ψ

where X ∈ RN×m and Y ∈ RN×n are the matrices

formed by stacking the states x and observations y in

the dataset, and Φ ∈ RN×d is a matrix of correspond-

ing features ϕ. For now, we provide the robot with a

pretrained encoder Ψ which extracts features that are

sufficient for learning the task.

The robot’s goal is to learn a matrix of policy pa-

rameters θ ∈ Rd×m that maps the features to actions

U ∈ RN×m:

U = Φθ + ϵ

The term ϵ accounts for any errors made by the human

teacher when demonstrating the task actions. Given

this problem formulation, we now establish how the di-

mensionality d of the features affects the number of

samples N required to learn the policy parameters θ.

Specifically, under the standard assumptions listed be-

low, we prove that:
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Proposition 1.When the demonstrated actions u have

a zero-mean Gaussian noise ϵ, and the features ϕ in-

put to the robot’s policy are normally distributed, the

amount of data N required to learn the parameters θ̂

of a linear policy varies exponentially with the dimen-

sionality d of the features.

Proof We assume that the actions demonstrated by the

human have a zero-mean Gaussian noise:

ϵ ∼ N (0, σ2
ϵ Im)

When the error follows a normal distribution, the or-

dinary least squares estimator θ̂ is also normally dis-

tributed [2]:

θ̂ ∼ N (θ, σ2
ϵ (Φ

TΦ)−1)

The variance in the estimated parameters corresponds

to the uncertainty in converging to the human’s pol-

icy. We quantify this uncertainty using the continuous

Shannon entropy of the estimator’s distribution [1]:

h(fθ̂) =
d

2
+
d

2
ln 2π +

1

2
ln|Σθ̂|

Here d is the dimensionality of the features. We will

now simplify the covariance term Σθ̂ to verify how this

uncertainty scales with the feature dimensions. We start

by writing ΦTΦ as a sum of the outer product of the

feature vectors ϕi ∈ Φ:

ΦTΦ =

N∑
i=1

ϕi ⊗ ϕi

From the definition of variance [11], the expected value

of the outer product can be written in terms of the

mean and variance of the feature vectors:

E

[
N∑
i=1

ϕiϕ
T
i

]
=

N∑
i=1

(
Σϕ + µϕµ

T
ϕ

)
To simplify this further, we assume that the fea-

ture vectors are normally distributed such that ϕi ∼
(0, σ2

ϕId). Note that this is a common assumption in

previous approaches that use Variational Autoencoders

(VAEs) [15] to encode image data. Equipped with this

assumption, we can now write the expected value of

the outer product as E[ΦTΦ] = Nσ2
ϕId and substitute

it back into the covariance of the estimator distribution:

Σθ̂ = σ2
ϵ (Nσ

2
ϕ)

−1Id

Finally, we take the determinant of the covariance ma-

trix and express the entropy over the estimated param-

eters as:

h(fθ̂) ∝ d · ln

(
1

N
· σ

2
ϵ

σ2
ϕ

)
(4)

From this result, we observe that uncertainty in the

learned parameters decreases logarithmically with the

number of data samples N but increases linearly with

the number of feature dimensions d. In other words, as

we decrease the dimensionality of input features, hu-

mans would need to provide exponentially fewer data

samples to converge to the human’s policy. ⊓⊔

Proposition 1 illustrates the importance of mapping

the robot’s high-dimensional observations into a mini-

mal feature representation. But what is the right repre-

sentation? Thus far we have assumed that the robot has

access to a feature function ψ that extracts sufficient in-

formation for learning the task. In the next subsection,

we will show that there can be many feature represen-

tations that are sufficient for imitating the actions in

the training data but do not align with the human’s

reasoning ϕ∗. As a result, these alternate feature rep-

resentations are susceptible to covariate shift and fail

when the robot encounters new states at test time.

3.2 Causal Confusion in Visual Imitation Learning

When the robot does not have any prior knowledge of

the task-relevant features, we can simultaneously train

a feature function fψ(x, y) = ϕ and policy πθ(x, ϕ) = u

on samples from the training dataset D:

πθ(x, fψ(x, y)) = u ∀(x, y, u) ∈ D (5)

However, this does not guarantee that the features

learned by the robot will match the task-relevant fea-

tures ϕ∗. For instance, when teaching the robot to make

coffee, imagine that the cup is always placed next to a

bowl during training. While the human knows that only

the cup is important, the robot may mistakenly learn

to extract the bowl’s pose (irrelevant features) or infer

the cup’s pose by observing the bowl instead (spuri-

ous correlations). Despite this incorrect mapping, the

robot could learn a policy that successfully grasps the

cup in all training instances because of its positional

relationship with the bowl.

More generally, these correlations create causal con-

fusion [14] when applying the learned feature function

in unseen scenarios. To demonstrate this formally, we

return to the linear regression problem. We now assume

that the encoder matrix ψ is unknown and combine it

with the policy parameters to create a single weight

matrix W = ψθ:

U = [XY ]ψθ + ϵ = [XY ]W + ϵ

In an ideal scenario, there is no noise (ϵ → 0) in the

human’s demonstrations, and the input matrix [XY ]
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has full rank. This allows us to obtain an exact least-

squares solution:

Ŵ = [XY ]†U

Here [XY ]† denotes the pseudo-inverse of [XY ]. While

there are infinite ways to factorize Ŵ into the compo-

nents ψ̂ and θ̂, because we have a unique Ŵ , all of these

choices are equivalent to the human’s true weights W ∗:

Ŵ = ψ̂θ̂ = ψ∗θ∗ =W ∗

By contrast, when there is non-zero correlation be-

tween the input dimensions — e.g., manipulating the

cup that is next to a bowl — the input matrix [XY ]

will have a non-trivial null space, resulting in an infinite

number of solutions for Ŵ :

Ŵ =W ∗ + V

Here V is any matrix in the null space of [XY ] that sat-

isfies [XY ]V = 0. This means that the weights learned

by the robot will not match the true weights, Ŵ ̸=W ∗,

except in the special case when V = 0.

This difference in learned weights will not affect the

robot’s performance if the correlations in the training

data are also present at test time. In this case, the test

inputs [XY ]test will have the same null space as the

training data:

[XY ]testV = 0

As a result, Ŵ will produce the same actions as W .

However, if the correlations in the inputs change at test

time, then the learned weights Ŵ will not produce the
same actions asW ∗ for any non-trivial V . For instance,

if the positions of the bowl and cup are no longer related

during testing, the test inputs [X,Y ]test will have full

rank. This means that V will not belong to the null

space of [X,Y ]test:

[XY ]testV ̸= 0

As such, the actions predicted by the robot will differ

from the true actions given by W ∗:

Utest = [XY ]testW
∗ ̸= [XY ]testŴ (6)

Overall, this result demonstrates that when the robot’s

observations contain unwanted correlations, the robot

can still learn what actions to take during training but

it will not understand why to take those actions. Be-

cause of this fundamental misalignment the learned pol-

icy may not generalize to new scenarios that differ from

the training distribution.

3.3 Problem Summary

In this section we showed that the amount of demon-

stration data required to train the robot policy in-

creases exponentially with the dimensionality of the in-

put states and observations. This slows down learning

for robots that take actions based on dense inputs like

camera images. We can improve the learning efficiency

by encoding robot observations into a compact feature

representation. Unfortunately, if the observations con-

tain misleading correlations, the encoded features will

fail to correctly explain the human’s actions — regard-

less of how many demonstrations the human provides.

When correlations are present in the training

dataset the robot has no way of determining causality.

Instead of pushing this fundamental limitation entirely

to the robot, we will enable humans to explicitly con-

vey relevant visual cues and features during training.

This additional information can help robots filter the

spurious correlations in their observations and extract

compact features that causally influence human actions.

In the following section we present our approach for ob-

taining these additional inputs from humans and train-

ing robots to mimic the human decision-making pro-

cess (i.e., imitating what the human does and why they

choose those actions).

4 Causal and Intuitive

Visual Imitation Learning

We want robots to efficiently learn new tasks from hu-

man demonstrations and generalize the learned behav-

ior to unseen task instances. In the previous section we

showed that understanding compact features is criti-

cal to efficient learning, but merely imitating human

actions is not always sufficient to recover these fea-

tures. To address this problem, we here re-frame how

humans provide demonstrations to include both show-

ing the desired behavior (what) and also highlighting

the features that influence their behavior (why). We

recognize that humans understand what aspects of the

task are important to their decision-making process,

and human teachers can label the task-relevant fea-

tures ϕ∗ = fψ∗(x, y) from visual observations (see Fig-

ure 2). Our proposed CIVIL algorithm then synthesizes

the augmented demonstrations to perform offline visual

imitation learning and recover the desired task.

In Section 4.1 we first equip humans with instru-

ments that enable them to intuitively communicate

information about the relevant features (i.e., ϕ∗) and

which parts of the observations they consider when ex-

tracting these features (i.e, ψ∗). Next, in Section 4.2,
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Fig. 2 Augmented data collection procedure for CIVIL. In
Step 1, we enable humans to mark task-relevant positions
(e.g., the coffee maker) with ArUco markers. In Step 2, as the
human demonstrates the task they can provide natural lan-
guage prompts that mention task-relevant objects (e.g., the
cup). The resulting dataset for offline learning includes states
x, images y, actions u, marker data b, and language prompts
l. After providing data, the human removes the markers from
the environment, and the robot processes its images to inpaint
those markers so that they are not required at test time.

we describe our network architecture for extracting fea-

tures from robot observations and mapping them to cor-

responding robot actions. We apply this architecture in

Section 4.3 to develop the CIVIL algorithm which syn-

thesizes data collected from our instruments to align

the robot’s features with the human’s reasoning. Fi-

nally, in Section 4.4 we provide implementation details.

A key contribution of our approach is that the robot

does not need instruments after training and can per-

form the task autonomously at test time based only on

visual observations.

4.1 Obtaining Task-Relevant Information from

Humans

We envision two channels for humans to intuitively ex-

plain their thinking when demonstrating tasks: i) con-

veying the features they extract, and ii) highlighting the

visual elements they focus on. To facilitate both chan-

nels, we introduce instruments for humans to seamlessly

integrate into their demonstrations.

Communicating Relevant Features. Task actions

often depend on contextual variables such as the posi-

tion of a target object, the color of a traffic signal, or

the speed of a moving obstacle. We can enable humans

to communicate these variables to the robot by equip-

ping them with the required sensors and interfaces. In

this work, we provide humans with physical markers

to specify poses and waypoints relevant to the desired

task. Specifically, we let humans place ArUco mark-

ers [16] in the environment before providing demon-

strations. These markers then continuously stream their

poses b ∈ Rdb to the robot as the human performs the

task. The ArUco markers have a binary pattern that

can be detected by the robot’s camera for pose estima-

tion; these markers are also small (one inch in width),

lightweight (∼10 grams), and adhere to various surfaces

in the environment. Consider our running example in

Figure 2: when teaching the robot to pick a coffee cup,

humans may attach a marker to its side to indicate

where they want to grasp. The marker poses b directly

inform the task actions (i.e. how the human teleoperates

the robot). Hence, we consider poses b as task-relevant

features that the robot learner should extract from its

observations and incorporate in its control policy.

While we only use positional markers in our experi-

ments, b can more generally include any variables mea-

sured through sensors placed by humans in the environ-

ment. For example, users could deploy pressure sensors

to communicate the force required to grasp different

objects during training.

Communicating Relevant Visual Elements. Not

all features essential for performing the task can be di-

rectly communicated using markers. For instance, along

with the grasping pose of the coffee cup, the human

might also care about the color of an indicator light on

the coffee machine. Of course, we could develop a sensor

to measure this new variable — but it would be much

more convenient for the user if they could just describe

the features of interest. We therefore enable humans

to direct the robot’s attention toward relevant visual

elements by using natural language instructions l ∈ L.
For example, human teachers may say “pick up the cof-

fee cup” and “look at the light on the coffee machine”

when teaching the robot to make coffee. While these

instructions do not specify the features explicitly (such

as the measured grasping pose) they help the robot un-

derstand which aspects of the environment the human

focuses on (e.g., the cup and coffee machine) and which

they ignore (e.g., other objects like the sugar box).
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Fig. 3 Network architecture of CIVIL. The model consists of encoder networks that map environment observations (images)
to a compact feature representation ϕ, and a policy transformer that takes a sequence of robot states and features as input and
predicts the task action. The training of our model is split into two phases. (Left) In the first phase we supervise a subset of
the features using a marker network h to explicitly encode the relevant poses b marked by the human expert. At the same time,
we train the remaining features to implicitly capture other task-relevant information by masking the input images to highlight
the relevant objects conveyed by the human through natural language instructions l. The features are trained together with
the policy transformer by optimizing a dual loss function that aligns the robot’s representation with human reasoning (the
why) and minimizes the error between predicted and ground truth actions (the what). (Right) In the second phase we freeze
the encoder network and policy network, and train a causal network c to map the original images to the same features as those
learned by the robot from the masked images in the first phase. This step ensures that the robot can extract the task-relevant
features without needing the human to place markers or provide language prompts at runtime.

To connect the human’s utterances with visual ob-

servations we leverage a language-conditioned video

segmentation model, DEVA [13]. In practice, DEVA as-

sociates the human’s verbal prompts with objects in the

robot’s view, producing bounding boxes {B} around

objects the human mentions. Note that humans can

also indicate relevant objects using ArUco markers. We

therefore harness the markers similarly to language, and

give them a dual purpose: in addition to estimating

marker pose, we detect objects closest to the marker

and retrieve those objects’ bounding boxes. Similar to

the human teacher, the robot should focus on the visual

elements within the bounding boxes when extracting

the features. We expect that this attention will reduce

causal confusion with irrelevant objects and allow the

robot to implicitly infer task-relevant features from the

demonstration data.

Data Collection. Overall, we shift the demonstration

process so that human teachers can use physical mark-

ers to explicitly convey relevant poses, and natural lan-

guage (or markers) to indicate relevant objects for im-

plicit features. Figure 2 shows how we integrate these

instruments into the learning pipeline. We ask humans

to place the markers before providing demonstrations

(Step 1), and then issue natural language commands as

they demonstrate the task (Step 2). Our experimental

data suggests that both instruments are intuitive for

humans to deploy. In our studies, users required less

than 15 seconds to attach the markers to relevant ob-

jects for teaching a coffee-making task (see Section 7).

The robot stores the (b, l) data collected from these in-

struments alongside the states x, images y, and actions

u. Thus, the augmented dataset D contains information

about what actions to imitate and why in the form of

(x, y, u, b, l) tuples. Once all demonstrations have been

collected, humans remove the markers from the environ-

ment (Step 3). We inpaint these markers from images

in the dataset so that the robot does not need to rely

on seeing the markers in order to perform the task. The

robot only retains the marker poses it recorded during

the offline demonstrations.

This is a significant change from standard imitation

learning approaches that learn solely from examples of

what the robot should do, i.e., just (x, y, u) tuples. The

additional information (b, l) we collect can potentially

help the robot resolve causal confusion when learning

from visual inputs. We next present our model architec-

ture and loss functions to train a causal feature function

and robot policy from the augmented data D.
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4.2 Network Architecture

Our proposed network architecture is illustrated in Fig-

ure 3. The robot uses an encoder network fψ(x, y) = ϕ

to map the n-dimensional visual observations y ∈ Rn
into d-dimensional features ϕ ∈ Rd. Based on Proposi-

tion 1 in Section 3.1, designers should set the dimen-

sionality of these features to be much lower than that

of the observations (i.e., d << n) in order to accelerate

robot learning. As we will describe later, d also depends

on the number of markers or language utterances that

the human teacher provides.

In practice, the robot often has multiple cam-

era views of the environment (such as a static cam-

era and an ego-centric camera). To synthesize these

views our architecture includes multiple encoders —

one for each camera — and then combines the out-

put of these encoders with the robot’s propriocep-

tive state x ∈ Rm. This combination captures the

robot’s current observations. To provide more context

for the robot’s actions (and enable the robot to rea-

son over its recent history) we then collate a sequence

of k + 1 states and corresponding features to form

X = [(xt−k, ϕt−k), . . . , (xt, ϕt)]. This collated data is

then input to a policy transformer πθ:

πθ(X ) = at (7)

Here subscript t denotes the data recorded at a specific

time step in the human’s offline demonstrations. The

policy transformer takes the states and features as input

and predicts an action token at for the latest time step.

We map this token to a robot action ut using an action

network gσ(a) = u.

Aspects of our architecture follow the structure of

previous visual imitation learning approaches [9,19].

But — as we will show — the key difference is how we

employ supplementary inputs (b, l) to align the learned

features with the human’s true features. In what follows

we introduce the auxiliary networks and losses needed

to achieve this alignment.

4.3 Supervised Learning with CIVIL

We now describe our Causal and Intuitive Visual Im-

itation Learning (CIVIL) algorithm for training the

robot’s policy and feature networks on the augmented

dataset D. Our algorithm consists of two training

phases as shown in Figure 3. In the first phase, we

leverage human guidance in the form of markers and

language to learn a task-relevant feature representation

(and a downstream policy). In the second phase, we

train the robot to causally extract these features with-

out any human guidance so that the markers and lan-

guage are not needed at test time.

We begin by outlining the first phase. Our train-

ing dataset includes two sources of information about

the task-relevant features ϕ∗. The marker poses b only

constitute a subset of these features; the robot should

infer the remaining non-positional features based on the

relevant objects highlighted by users with markers and

language commands l. We capture this distinction by

dividing the robot’s features ϕ into two components —

one for the positional features explicitly communicated

by the user, and another for the non-positional features

that that are implicitly learned by the robot:

ϕ = [ϕexplicit, ϕimplicit] (8)

We learn these components separately using the marker

and language inputs described below.

Explicit features. The marker poses b directly inform

the task actions. Therefore, we want the robot’s features

ϕ to include all the information from the markers. At

the same time, we recognize that the intended feature

ϕ∗ may be different than the beacon’s position b —

perhaps the human is trying to convey position-related

features such as size, shape, or distance. To capture

this correlation between b and ϕ we learn ϕexplicit such

that it is a minimally sufficient representation of b. In

other words, ϕexplicit should not include any extra in-

formation than what is needed to capture the marker

data. Formally, we can make ϕexplicit contain all infor-

mation about b by minimizing the conditional entropy

of b given ϕexplicit.

H(b | ϕexplicit) = −E(x,y,b)∼D log p(b | ϕexplicit) (9)

Minimizing H(b|ϕexplicit) means that when we see

ϕexplicit the robot can determine the corresponding b

vector. However, this does not ensure that the explicit

features exclude other irrelevant information. To pre-

vent this irrelevant data, we must also minimize the

conditional entropy H(ϕexplicit|b):

H(ϕexplicit | b) = −E(x,y,b)∼D log p(ϕexplicit | b) (10)

From our information-theoretic analysis we seek to

learn ϕexplicit so that it minimizes both Equation (9)

and Equation (10). We practically achieve this by in-

troducing a marker network h(b | ϕexplicit) which

maps explicit features to marker readings. This net-

work functionally represents the conditional probabil-

ity p(b | ϕexplicit). We train the forward marker network

along with the encoder network fψ by minimizing the

following loss function based on Equation (9):

Lexplicit = −E(x,y,b)∼D log h(b | fψ(x, y)explicit) (11)
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Here fψ(x, y)explicit = ϕexplicit is the portion of fea-

tures that we use to encode the relevant poses. The

loss in Equation (11) captures half of our analysis, and

ensures that the features encode b. To prevent the fea-

tures from encoding unnecessary information and sat-

isfy Equation (10), we make h(·) an invertible function.

This design choice means that when we train h to map

the explicit features to the corresponding marker po-

sitions, we can also map those positions back to the

features without adding or losing any information. We

ensure that h is invertible by configuring all layers to

have the same dimensions — forming a square matrix

— and not adding any non-linear activation layers in

between. Consequently, we must set ϕexplicit to have

the same dimensions db as the marker data b. In our

experiments, we model h as an identity function Idb .

Note that the explicit features ϕexplicit need not just

be the marker positions: they can also contain any non-

positional information that is correlated to the marker

data. For example, the explicit features may capture

the size and shape of the cup in the camera images be-

cause these aspects vary with the cup’s position. These

features can be then used by the robot in a variety of

ways, e.g., the robot can estimate the distance of the

cup based on its size and use the shape to determine

where it should be grasped.

Implicit features.Other than explicitly specifying the

relevant positions through markers, the human also in-

dicates relevant objects using natural language prompts

l ∈ L. Here we explain how the robot maps these

prompts to the implicit features ϕimplicit from Equa-

tion (8). Our first step is to locate the objects mentioned

by the human within the corresponding image y. We do

this by feeding the image y and language prompt l to

a DEVA model to obtain a bounding box B for each

mentioned object. We also generate bounding boxes for

objects that overlap with any markers detected in the

image. For each (y, l) pair we thus obtain a set {B} that
includes bounding boxes of task-relevant objects.

We recognize that the human teacher understands

the desired task, and we assume that we can rely on

that human to identify the key objects or aspects of

the task via language and markers. This implies that

parts of the image y outside the bounding boxes {B}
are likely irrelevant and should be ignored by the robot

when extracting features. To enforce this, we generate

masked images y′ ∈ Rn by setting all pixels in y that are

not within the bounding boxes as zero, and incorporate

these filtered images into the training dataset D.
The masked images y′ retain relevant information

(e.g., the cup and coffee maker) and discard most of

the extraneous details (e.g., clutter on the kitchen ta-

ble). But still, the robot does not explicitly know which

features to extract from these images and must implic-

itly learn them based on the actions demonstrated by

the human. In our approach we learn the implicit fea-

tures by training the encoder network and policy trans-

former end-to-end to imitate human actions. Specif-

ically, we minimize the Kullback–Leibler (KL) diver-

gence between the robot’s policy gσ ◦ πθ and the hu-

man’s optimal policy πθ∗ across the training dataset:

DKL(πθ∗ || gσ) = −E(x,y′,u)∼D[ log gσ(u | a)] + C (12)

Here a is the action token output by the policy trans-

former πθ given a sequence of states and features X =

[xt−i, ϕt−i]
k
i=0, where the features ϕt−i = fψ(xt−i, y

′
t−i)

are extracted from masked images y′. The constant C

represents the entropy of the expert’s policy πθ∗ which

does not depend on the robot’s parameters. Hence, we

can ignore the constant term and obtain the following

loss function for the robot’s policy:

Lpolicy = −E(x,y′,u)∼D [log gσ(u|πθ(x, fψ(x, y′)))] (13)

Minimizing Lpolicy trains the policy transformer and

action network to imitate the actions in the training

dataset, and encourages the encoder network to ex-

tract features that facilitate this imitation. What makes

this component of our approach different from prior

work is that we extract these features from masked

images. Remember that the robot does not know the

relevant aspects a priori, so if we try to infer the un-

derlying features from the raw images y there is a

greater change of spurious correlations across the high-

dimensional dataset. However, when we mask the irrel-

evant details based on objects referenced by the human,

it reduces the entropy of the visual data and the likeli-

hood of learning false associations, enabling the robot

to better derive features that explain why the human

teacher chose their actions.

To summarize, we mask robot observations based

on objects mentioned in the language prompts l to im-

plicitly learn the relevant features with Equation (13).

In addition, we also use the masked images y′ instead of

the full images y to explicitly encode the relevant poses

b with Equation (11). This supervised feature extrac-

tion and policy learning constitutes the first training

phase of CIVIL (i.e., the left side of Figure 3).

Causal Encoder. We now describe the second phase

of CIVIL shown on the right side of Figure 3. So far we

have found a way to obtain the task-relevant features

during training ; next, we must consider how the robot

can obtain these same features at test time. During

demonstrations the human can augment the robot’s ob-

servations through markers and language, which CIVIL
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leverages to extract task-relevant and supervised fea-

tures. But when performing the task autonomously the

robot will no longer have this guidance — so the robot

needs to understand how to extract these features from

unmasked images y of the environment.

To facilitate this, we freeze the parameters of the

encoder network fψ that we trained in the first phase

and introduce a new causal network cλ that will learn

to extract the task-relevant features from the unmasked

images y. We train this causal network to map the un-

masked images y to the same features as those obtained

by the trained encoder network from the corresponding

masked images y′:

Lcausal =
∑

(x,y,y′)∈D

||fψ(x, y′)− cλ(x, y)||2 (14)

By minimizing the loss Lcausal we teach the causal net-

work to encode the same task-relevant features that the

encoder network learned to extract in the first phase.

We expect that this will encourage the causal network

to focus on the same regions of the raw images y as

those highlighted by the human with their language

and markers.

At run time the robot can leverage causal network

cλ to filter its camera images. The robot then passes

these filtered images to the policy transformer, which

ultimately outputs actions taken by the robot arm. In-

tuitively, this second training phase removes the depen-

dence on human language or physical markers during

online execution.

CIVIL Algorithm. The steps for training our archi-

tecture are listed in Algorithm 1 (and visualized in Fig-
ure 3). The human first places markers in the environ-

ment to stream relevant poses and then demonstrates

the task while providing natural language prompts to

indicate the relevant objects. The robot uses the mark-

ers and language instructions to obtain bounding boxes

for all key objects and mask the irrelevant portions of

the robot images. These masked images are added to

the training dataset along with the marker readings.

We train our network architecture end-to-end by mini-

mizing the loss Lcivil in the first training phase:

Lcivil = Lpolicy + Lexplicit (15)

In the second training phase, we freeze the encoder net-

work and then train the causal network with Equa-

tion (14). Overall, the trained causal network models

how humans reason over the environment observations,

while the trained policy transformer replicates how hu-

mans decide the task actions.

Algorithm 1 CIVIL

1: Human adds markers to the environment

2: Human demonstrates task while giving language

prompts: D = {(x, y, u, b, l)}
3: Augment dataset with masked images D ← D∪ [y′]

4: Initialize model networks fψ, πθ, gσ, cλ
5: for i ∈ 1, 2, . . . do

6: Compute Lcivil on D
7: Update (ψ, σ, θ)← (ψ, σ, θ)− α∇ψ,σ,θLcivil
8: end for

9: Freeze fψ network

10: Augment dataset with play data Dcausal ← D ∪
Dplay

11: for j ∈ 1, 2, . . . do

12: Compute Lcausal on Dcausal
13: Update λ← λ− α∇λLcausal
14: end for

15: return Trained networks cλ, πθ, gσ

4.4 Implementation

A public CIVIL repository q available here: https://

github.com/CIVIL2025/Implementation.

During our experiments the robot takes images

from both a static third-person view ystatic and an

ego-centric view yego. Accordingly, we train differ-

ent encoder networks fψ1
(x, ystatic) = ϕstatic and

fψ2
(x, yego) = ϕego for images from each camera view,

and implement two corresponding causal networks cλ1

and cλ2
. While ϕstatic has both explicitly and implic-

itly learned components as in Equation (8), we only

extract implicit features from the ego-centric view be-

cause it does not always observe the marker positions

(i.e., objects move in and out of the ego frame). We

pass both features (x, ϕstatic, ϕego) as input to the robot

policy. Before feeding these inputs to the policy trans-

former πθ, we project the states and features into sep-

arate tokens of size 128 and add a sinusoidal positional

encoding to each token to indicate its location in the

sequence [53]. The encoders are convolutional neural

networks; specifically, we choose ResNet-18 initialized

with pre-trained weights [21]. The policy architecture

includes a 2-layer transformer encoder followed by a

multi-layer perceptron (MLP) action network with two

hidden layers.

Play data. CIVIL enables robots to align their repre-

sentations with those of the human teacher. But to gen-

eralize these representations to new scenarios the robot

may still require variability in the training dataset D.

https://github.com/CIVIL2025/Implementation
https://github.com/CIVIL2025/Implementation
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For instance, if we train the robot to extract relevant

poses for just one location of the coffee cup, it may not

be able to accurately determine the poses of the coffee

cup in new test configurations.

Fortunately, having instruments for explaining hu-

man reasoning enables the robot to cheaply train the

causal network without needing more human demon-

strations. When feasible, the robot collects additional

language prompts l and relevant features b for new task

instances that are outside the initial demonstrations,

and stores it with the observations (y, b, l) ∈ Dplay.
Note that this is an optional step and does not re-

quire humans to demonstrate what actions to take. The

play data Dplay only includes information of the rele-

vant objects and poses (i.e., the why). We combine this

play data with the training data D to create an aug-

mented dataset Dcausal = D∪Dplay, and use it to train

the causal network by minimizing both Lexplicit and

Lcausal. We do not use Dplay to train the feature net-

works or the policy transformer.

In summary, our proposed algorithm leverages

markers and verbal prompts to bootstrap the learning

process and mitigate causal confusion. Both types of hu-

man inputs contribute to improving the robot’s under-

standing of the human’s underlying features, resulting

in a compact representation of the robot’s visual obser-

vations. In the next two sections, we demonstrate the

significance of each input and compare CIVIL to state-

of-the-art baselines for offline visual imitation learning.

5 Simulations

We start by evaluating CIVIL on simulated tasks. Our

goal is to test whether the proposed algorithm improves

learning efficiency and reduces causal confusion by help-

ing robots align their feature representations with those

of a human expert. Across multiple simulated tasks,

we compare performance between CIVIL and state-

of-the-art baselines for contexts within and outside of

the training distribution. Unlike CIVIL, these baselines

learn feature embeddings through self-supervised trans-

formations of the robot’s images, segmenting known

objects, or using pre-trained vision-language features.

Below we describe these baselines in more detail:

– Behavior cloning (BC) [22]: A standard imitation

learning approach. BC learns to encode camera im-

ages and map them to robot actions by only training

the policy based on the human’s demonstrated ac-

tions. This approach forces the robot to implicitly

infer the task-relevant features.

– Self-Supervised Features (BYOL) [17]: A self-

supervised framework that learns image representa-

tions by mapping different views to the same feature

encoding. The alternative views are generated using

transformations such as random cropping, flipping,

and color jittering. BYOL learns visual features that

are not supervised to align with the human’s inten-

tion. In our experiments we pre-trained a BYOL

encoder on the images in the training data as well

as the play data, froze it, and then used its self-

supervised features to train the downstream policy.

– Object-Oriented Features (VIOLA) [60]: An ap-

proach that encodes images by focusing on objects

in the scene. VIOLA uses a pre-trained Region Pro-

posal Network (RPN) [43] to obtain bounding boxes

for k observed objects and then extracts object-

specific features. In our simulations we provided VI-

OLA with perfect detection by giving it the ground-

truth bounding boxes of all objects in the environ-

ment. We then randomly selected k = 5 of these

objects to extract object features as in the original

implementation. We ensure that these objects in-

clude the task-relevant item. By segmenting known

objects, VIOLA learns to ignore background varia-

tions. However, the robot still needs to figure out

which of the k objects are relevant by training the

features and downstream policy to imitate human

actions in an end-to-end manner. Note that — un-

like our approach — VIOLA requires access to the

object bounding boxes even during testing.

– Task-Specific Object Features (Task-VIOLA) [59]:

This approach is a variation of VIOLA that enables

human teachers to indicate the desired objects by

scribbling on the robot’s images. The robot then ob-

tains point clouds of the annotated objects from its

depth camera, and extracts features by training the

downstream policy to imitate human actions. We re-

place object point clouds with image segmentations

for a fair comparison with other methods that only

use RGB images. Note that (similar to VIOLA) this

approach also requires a pre-trained vision-language

model during test time to segment the objects.

– Vision-Language Features (CLIP) [40]: The meth-

ods discussed so far only derive features from visual

inputs. We now include a baseline that learns from

both images and language prompts. Specifically,

we use a CLIP encoder that associates visual con-

cepts with their text descriptions by mapping both

inputs to the same feature space. CLIP features

trained on large text-image datasets are general-

purpose and may not directly apply to downstream

robot tasks [42]. Therefore, we take a pre-trained

ResNet-based CLIP encoder RN50×4 and fine-tune

it for our simulation tasks by adding top and bot-
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tom adapter layers and then training them with the

robot policy as in [48].

Unlike these baselines our CIVIL approach lever-

ages human inputs from the demonstration process to

supervise a causal feature embedding. In contrast to

Task-VIOLA — which lets humans mark relevant ob-

jects on a computer screen — CIVIL does not need a

pre-trained model to segment the objects at run time.

Simulation Environment. We trained and evaluated

all methods on three tasks within the CALVIN environ-

ment [31] shown in Figure 4. This 3D environment in-

cludes a 7-DOF Franka Emika Panda robot arm, three

differently colored cubes on a workbench, a sliding door,

a drawer, a light bulb operated with a control switch,

and an LED controlled with a button. We randomly ini-

tialize these elements during data collection and eval-

uation. The demonstrations are either simulated using

a pre-trained expert policy [44] or manually collected

by an expert teacher. We also had the human expert

specify the relevant objects and obtained ground-truth

poses of these objects from the simulation environment.

Tasks. We evaluated the methods on the following

three tasks in CALVIN (see Figure 4):

1. Picking. The robot reaches a red block placed ran-

domly on the table, grasps it, and lifts it to a prede-

fined height. This task tests whether the robot can

learn features that encode the position of the block

and generalize the picking motion to new block posi-

tions. In the training scenarios, we initialize the red

block in a random position on the left or right side

of the table (but not in the middle). By contrast, the

testing scenarios include block positions across the

entire table. Here CIVIL measures the pose of the

red block during training; accordingly, we expect it

to understand that the red block is a key feature,

and extrapolate to new block positions at test time.

Task-relevant objects: red block

Marker information: red block position and orien-

tation

2. Sliding. The robot arm chooses its behavior based

on the state of the light bulb. If the light is on,

the robot opens a drawer. If the light is off, the

robot instead moves a sliding door. This task tests

whether the robot can implicitly extract relevant

features that cannot be conveyed directly by po-

sitional markers (e.g., whether the light is on or

off). Our approach receives language prompts that

mention the bulb, and leverages these prompts to

mask out everything but the relevant objects from

its images. We therefore expect CIVIL to learn the

task more efficiently than all baselines except Task-
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Fig. 4 Manipulation tasks in the CALVIN environment: (1)
Picking up a red block. The block is initialized on the left
or right side of the table during training. Some of the possi-
ble block positions are shown using transparent overlays. (2)
Opening the drawer or moving the sliding door based on the
light bulb state. The bulb is located in the top right corner
and appears yellow when on or white when off. (3) Stack-
ing on the blue or pink block based on the light bulb state
and block positions. The task starts with the red block in
the robot’s gripper and the blue and pink blocks in random
positions on the table. In all tasks, the irrelevant objects are
also initialized randomly.

VIOLA, which also receives the segmented image of

the light bulb.

Task-relevant objects: sliding door, drawer, light

bulb

Marker information: sliding door and drawer posi-

tion

3. Stacking. In this final task the robot starts with the

red block in its gripper and chooses where to place it

based on the state of the light bulb. If the light is on,

it stacks the red block on a blue block. If the light

is off, the red block is stacked on a pink block. The

positions of both the blue and pink blocks are initial-
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Fig. 5 Results from our ablation study. In Explicit the sys-
tem is trained on the position data of the marked objects,
and in Implicit the system is trained on the masked images.
CIVIL takes advantage of the human’s explicit and implicit
guidance. We find that both components contribute to the
overall effectiveness of CIVIL. Each policy is trained with
40 demonstrations.

ized randomly. This task tests whether the robot can

derive both color-based features (i.e., the light bulb

state) that must be implicitly learned from masked

images as well as positional features (e.g., the block

positions) that can be explicitly specified with mark-

ers. Overall, this task combines the challenges of the

first two tasks; hence we expect CIVIL to outper-

form all baselines because the human conveys both

relevant poses and objects while training.

Task-relevant objects: blue block, pink block, light

bulb

Marker information: blue and pink block poses

Demonstrations. At each timestep of a task demon-

stration we record an RGB image yenv of size 200×200

from a static camera that observes the entire manipu-

lation environment, an egocentric RGB image yego of

size 84 × 84 from a gripper-mounted camera, an 8-

dimensional robot state x, and a 7-dimensional end-

effector action u. The state includes 7 joint angles of

the robot arm and a Boolean gripper state. The ac-

tion is a 6-dimensional linear and angular velocity and

a Boolean gripper actuation. Additionally, we obtain

bounding boxes {B} for all objects in the simulation

environment and explicit features b in the form of 6-

dimensional Cartesian poses of relevant objects in that

task. Each method uses a combination of these inputs

to train the feature encoders and robot policy. For the

Picking and Stacking tasks, we collect an equal amount

of play data which includes images, bounding boxes,

and relevant poses in randomly initialized scenarios, but

it does not include robot states and expert actions.

Training. We train all methods for 500 epochs using

the Adam optimizer with a learning rate of 0.0001 and

a scheduler that decreases the rate by a factor of 0.5 ev-

ery 100 training epochs. Our batch size is 128. During

training, we leave out 10% of the training data and use

it as a validation set to evaluate the model after each

epoch. After training is complete, we save the model

instance with the lowest loss on the validation set. The

validation loss is the mean squared error (MSE) be-

tween the expert and model predicted actions.

Ablations. We compare CIVIL with two ablation vari-

ants in the simulation environment to evaluate how

the explicit and implicit feature modules contribute to

CIVIL’s overall performance (Figure 5). In the explicit-

only ablation training is restricted to the first phase,

where the policy loss Lpolicy is optimized using un-

masked image observations, and the explicit supervi-

sion loss Lexplicit is applied to marker data. By con-

trast, the implicit-only ablation trains the causal net-

work without incorporating Lexplicit during the first

training phase. For each task, the policies are trained

using 40 demonstrations. Observations from the roll-

outs suggest that the visual markers are particularly

useful for recognizing and localizing the target object

when it is not yet directly visible in the gripper camera.

Policies trained with Lexplicit tend to remain closer to

the desired trajectory during the early stages of a roll-

out. However, in tasks involving multiple relevant ob-

jects such as stacking, the explicit features require more

diverse play data to generalize effectively. The implicit

features are designed to capture color or 2-dimensional

segmentation patterns to complement the information

not represented in the 3-dimensional spatial coordi-

nates learned by explicit features. In practice, we found

that implicit-only ablations utilizing causal networks

learned richer representations from gripper images, en-

abling more precise stacking behaviors. Combining ex-

plicit and implicit features helps CIVIL achieves a high-

est success rate across all three tasks.

Results. Our results are summarized in Figure 6. Each

method is trained on datasets having 10, 20, 40, 80,

and 120 demonstrations. For statistical robustness, we

conduct 10 independent training and testing runs for

each method and dataset size. In each run, we test the

trained policy across 100 randomized task configura-

tions and report the average success rate.

Picking: For the picking task we found that our

CIVIL algorithm outperformed all baselines. A two-

way ANOVA test indicated significant main effects for

the choice of method (F (5, 270) = 179.84, p < 0.001)

and the number of demonstrations (F (4, 270) = 223.08,

p < 0.001) on the success rate. Post hoc comparisons
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Fig. 6 Section 5 results for visual imitation learning in the simulated CALVIN environment. We compare our proposed
approach (CIVIL) to standard behavior cloning (BC) and baselines that use self-supervised features (BYOL), object-specific
features (VIOLA and Task-VIOLA), or vision-language features (CLIP). In the Picking task we observe that CIVIL significantly
outperforms all baselines in picking up the red block from different positions across the table. Our approach is particularly
effective for block positions that are outside the training distribution (i.e., center of the table). This is likely because CIVIL
understands what aspects of the image should influence its policy, making the system robust to background clutter or shifting
positions. In the Sliding task, we find that CIVIL successfully learns to move the drawer or slider based on the state of the
light bulb in just 40 demonstrations. In contrast, baselines that use pre-trained features (BYOL and CLIP) are less precise in
detecting the light signal, which reduces their success rate. This suggests that CIVIL can also learn to extract non-positional
features (e.g., light bulb state) more efficiently by masking its images based on human-provided language prompts. Lastly, in
the Stacking task CIVIL leverages both markers and language to extract the positions of the pink and blue blocks as well as
the state of the light bulb. This enables the robot to stack the red block more successfully on either the pink or blue block,
resulting in a significantly higher success rate.

using Tukey’s HSD test found CIVIL to be significantly

more effective than the alternatives (p < 0.01).

To explore why our approach was more successful

than the baselines, we separately examined their per-

formance when the red block was initialized in posi-

tions similar to those in the training dataset (i.e., left

or right side of the table) and when the red block was

placed outside the training distribution (i.e., center of

the table). See Figure 6 (bottom). When trained with

120 demonstrations, CIVIL almost always picked up

the red block from the center of the table while the

baselines had less than a 20% success. The difference

between the methods was less pronounced when pick-

ing the red block from known regions of the table: for

these previously seen positions the baselines had a suc-

cess rate higher than 50%, while CIVIL grasped the

block in more than 80% of the configurations. Taken

together, these results suggest that the baselines may

have overfit to the training distribution, or learned poli-

cies that are correlated with the extraneous objects. By

contrast, CIVIL correctly understood why the human

teacher chose their actions, and learned a policy that

reached the red block despite environmental changes

and distribution shifts.

Sliding: In this second task the drawer and slider

locations are fixed across all task configurations. In-

stead of focusing on object positions, now the robot

needs to learn to condition its behavior on the state

of the light bulb (while ignoring distractors within

the scene). Here we observed that CIVIL successfully

learned the task after training on just 40 demonstra-

tions. The baselines, on the other hand, were unable

to achieve the same success rate. A two-way ANOVA

test indicated significant main effects for the choice of
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method (F (5, 162) = 27.33, p < 0.001) and the dataset

size (F (2, 162) = 19.79, p < 0.001) on task success.

We conducted pairwise comparisons to better un-

derstand the differences between methods. Both ap-

proaches that used pretrained features performed

poorly on this task. A Tukey’s HSD post-hoc test re-

vealed a significant difference in the performance of

CIVIL and BYOL (p < 0.001) and CIVIL and CLIP

(p < 0.001). We posit that CLIP underperformed

since it is pretrained on real images, which may not

adapt well to the simulated environment even after

fine-tuning. BYOL is trained on simulation images, but

learns features through self-supervision that may fail

to emphasize the task-specific light state. On the other

hand, the object-oriented approaches performed better

because they focused on a small set of objects includ-

ing the light bulb. Despite this advantage, both VIOLA

(p < 0.001) and Task-VIOLA (p < 0.05) achieved a sig-

nificantly lower success rate than CIVIL.

Surprisingly, we found that standard behavior

cloning performed well in this task. We attribute this

result to the small size of its feature space. While BC

only extracts one feature token for each camera, the

object-centric methods extract two tokens: global and

object-specific features. Following our analysis in Sec-

tion 3.1, a more compact feature space could enable BC

to learn more efficiently. Overall, this simulation result

illustrates that by masking images based on language

prompts CIVIL is able to extract non-positional fea-

tures that help it perform the task more successfully.

Stacking: Our final simulation combines the chal-

lenges from the first two tasks. Here we observed that

CIVIL achieved a significantly higher success rate than

all baselines. A two-way ANOVA revealed significant

main effects for method choice (F (5, 270) = 80.31, p <

0.001) and demonstration count (F (4, 270) = 163.8,

p < 0.001). Further, post hoc comparisons with Tukey’s

HSD test indicated that CIVIL was significantly more

effective than the baselines (p < 0.001). Since we used

the same policy architecture for all the methods, the dif-

ferences in their success rate were predominantly due to

the features they extracted. This indicates that CIVIL

captured both types of task-relevant features more ef-

fectively — the position of the block and the visual

state of the light bulb.

Takeaways. Our simulation results demonstrate that

in a cluttered environment with distracting visual ele-

ments, CIVIL consistently learns to perform the manip-

ulation tasks from fewer demonstrations as compared

to approaches that do not seek to align human and

robot representations directly. This highlights the ben-

efit of augmenting task demonstrations to convey not

just what actions to take but also how to decide on

those actions. Specifically, we found that using markers

to indicate relevant positions enables robots to general-

ize to new configurations, and using language prompts

to identify and mask-relevant objects enables robots to

efficiently learn tasks without being confused by irrele-

vant items.

What sets CIVIL apart are the additional human

inputs we collect as part of the demonstrations and

play data. Thus far we have shown the benefit of mark-

ers and language in a simulated setting and assumed

that these instruments are deployed by an expert. But

how useful are these inputs in real-world tasks, and can

these inputs be easily obtained from novice users? In

the following sections, we conduct real-world experi-

ments and user studies that evaluate whether the per-

formance of our approach holds in practical scenarios

where users have a limited time to collect data: placing

markers, providing verbal commands, and demonstrat-

ing the task.

6 Real-World Experiments

We now move to a real-world setting where the robot

arm performs manipulation tasks on a kitchen table.

Compared to the simulation environment, a real sce-

nario presents several challenges: the images are more

detailed (e.g., objects have shadows and textures as op-

posed to a solid color), there is a limited time to collect

demonstrations, and the robot may not be able to de-

tect markers and segment images perfectly (i.e., there

can be noise in the marker poses and bounding boxes).

Our goal is to test whether CIVIL can still be effective

in training robots with noisy inputs and limited data.

In this section we compare our approach to two vi-

sual imitation learning baselines: i) Task-VIOLA: the

method from our simulations that receives segmented

images of the task-relevant objects, and ii) FiLM [36]: a

vision-language baseline that uses language prompts to

condition its visual features with an affine transforma-

tion. We applied this approach instead of CLIP because

we found that the features obtained from a pre-trained

CLIP encoder did not work well in our real-world tasks

during initial testing. Unlike CLIP, FiLM requires lan-

guage prompts during both training and testing.

Experimental Setup. We evaluate these methods on

a 7-DOF Franka Emika Panda robot arm mounted on

a table. The robot uses two Logitech C920 webcams to

observe the environment: one serves as a static camera

that captures the entire scene, and the other functions

as an egocentric camera attached to the end effector

of the robot arm. We also use a microphone to record

verbal instructions during demonstrations. To indicate
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Fig. 7 Results for the real-world experiments in Section 6. We compare our proposed approach (CIVIL) to object-oriented
(Task-VIOLA) and language-conditioned (FiLM) approaches in four manipulation tasks: (1) cooking vegetables or meat, (2)
pressing a red button, (3) picking a cup, and (4) pulling a bowl to the center of the table. The top row shows examples of
training scenarios in each task. We highlight the task-relevant objects in green and one of the distracting objects with a red
boundary. During training, the position of the distracting object can be correlated with the relevant object, but this correlation
is not present during testing. Example test scenarios are shown in the second row, where the target object appears in an unseen
position (except in the cooking task, where the target is fixed). The bottom row shows the success rates of the robot arm.
We use a darker shade to denote success in seen scenarios and a lighter shade for unseen scenarios. The performance for all
approaches drops as the tasks become more complex. In our experiments, cooking was the easiest task as the pan was fixed,
while pulling was the most challenging because it involved two target-oriented subtasks, reaching the bowl and bringing it to
the center. CIVIL achieves a significantly higher success rate than the object-oriented and language-conditioned approaches
across all real-world tasks.

relevant poses, we use 3D-printed cubes with a width

of 20 millimeters as the physical markers. Five faces of

the cube have ArUco tags that uniquely identify that

marker, while the sixth face has a reusable adhesive. If

the robot detects more than one face of a marker, we
take the average of their positions.

Tasks. We evaluate the methods along four manipula-

tion tasks (also shown in Figure 7):

1. Cooking. The robot arm stirs or scoops the con-

tents of a pan with a spatula. If the pan has “meat,”

the robot scoops it. If the pan has “vegetables,” it

stirs them. We keep the pan in a fixed location on a

table and surround it with objects that can confuse

the robot. In particular, during training the robot

always sees a tomato can when stirring vegetables or

a sauce bottle when scooping meat. We test whether

the robot can ignore these background objects and

learn to act based only on what is in the pan.

2. Pressing. The robot presses a red button on a table

that has five cups of different colors. While training,

the button is placed on the left or right side of the

table, with the yellow cup always located behind

the button. During testing, the button can also be

in the center and may not be in front of the yellow

cup. We test if the robot can avoid being confused

by correlations with the yellow cup and push the

button regardless of its location.

3. Picking. The robot picks up a cup from multiple

locations on the table. The robot also sees other ob-

jects like a bowl, a spam can, a pasta box, a bleach

bottle, and sugar packs. During training, we posi-

tion the cup on the right side or in the center of

the table with the bowl always in front of the cup.

However, the cup can be on the left side or at any

intermediate location during testing, and the bowl

may not be in front of it. As in the previous task,

we test whether the robot can avoid being confused

by the bowl and generalize to unseen cup positions.

4. Pulling. The robot pulls a bowl to the center of the

table. During training, the bowl contains a plastic

eggplant and is always placed behind a plastic car-

rot. There are also other vegetables scattered on the

table. However, the eggplant can be in a different

container than the bowl during testing. Similar to

the previous task, the robot only sees the target ob-

ject (i.e., bowl) on the left or right side of the table

in the training data, but the testing scenarios also

include intermediate positions. We test if the robot



CIVIL: Causal and Intuitive Visual Imitation Learning 19

can learn to focus only on the bowl and not its con-

tents, and generalize to new object positions.

Demonstrations The training demonstrations are

provided by an expert human using a Logitech joy-

stick. Before performing the task, the expert attaches

markers to the target objects. During each demonstra-

tion, the robot records the static and egocentric RGB

images yenv, yego which are resized to 200 × 200, the

8-dimensional robot state x which includes 7 joint an-

gles and one binary gripper state, and a 8-dimensional

action u. The action is a 7-dimensional joint velocity

and a binary gripper action. The robot also tracks the

positions b of the markers with the static camera. How-

ever, the markers are not detected in every frame so we

only obtain marker poses for a subset of the images col-

lected during demonstrations. The demonstrator pro-

vides verbal instructions l (e.g., scoop the meat or stir

the vegetables) which are recorded with a microphone

and then transcribed to text by a speech recognition

model [41]. We use an open-world video segmentation

model DEVA [13] to obtain bounding boxes {B} from
text prompts. Lastly, we in-paint the markers from the

images using OpenCV’s inpainting tools.

Results. Our results are summarized in Figure 7. We

trained the methods with 20 expert demonstrations in

each task except button pushing, for which we provided

10 demonstrations. We then tested the methods in sev-

eral scenarios that reasonably covered all distinct object

configurations in each task. Specifically, for tasks num-

bered 1 to 4, we had 40, 9, 16, and 24 test scenarios,

respectively. We measured success based on whether

the robot completed the intended task correctly. For

instance, if the robot gripper touched anywhere on the

button in the pressing task, it was recorded as a success.

But if the robot missed the button, it was a failure. The

success rates are averaged over 3 training and evalua-

tion runs.

We test on both seen and unseen scenarios. Here

we clarify that positions of the irrelevant objects are

randomized during testing, and thus no test scenario

is exactly the same as a training example. Seen there-

fore refers to contexts where the relevant object (e.g.,

the button) is in a region of the table where the robot

had observed that object at least once during training,

while unseen refers to the relevant object being in a

completely new region.

The real robot arm performed the tasks more suc-

cessfully when trained using CIVIL than with the

object-oriented or language-conditioned baselines. Our

approach performed particularly well in unseen test sce-

narios, indicating that the robot learned to semanti-

cally map the its images into task-relevant and human-

aligned features. This result again highlights the ben-

efit of intuitively supervising the robot’s features with

markers and language, and shows that CIVIL can work

well even in real settings where the markers may not

be detected at every timestep. However, contrary to

our expectations, FiLM performed considerably better

than Task-VIOLA. Most surprisingly, despite having

segmented images of the target object, Task-VIOLA

had a less than 15% success rate across all tasks. We

suppose the following two reasons for its poor perfor-

mance. First, in addition to the object-specific features,

Task-VIOLA also extracts global features from the un-

segmented image that can contain irrelevant informa-

tion. As a result, the policy must learn to discard this

information implicitly, which is challenging to do given

just 20 demonstrations. Second, Task-VIOLA requires

an online object-segmentation approach that may not

work perfectly in practice. We found that while it was

possible to obtain accurate bounding boxes during the

offline training, the robot failed to detect the objects

online, especially when they came into contact with the

robot’s gripper. On the other hand, CIVIL only requires

object masks during training and thus does not face the

same challenge with online image segmentation.

Overall, our real-world experiments show that given

the same number of demonstrations, robots can learn

the task more efficiently when supported with markers

that specify relevant poses and language prompts that

mention relevant objects. However, in practical settings,

users may have limited time to provide both demonstra-

tions and the additional inputs. The time required to

attach markers and give play data may therefore reduce

the number of demonstrations that users can collect.

Another factor is that our experiments involved expert

teachers who were familiar with placing the markers

and giving verbal commands while teleoperating the

robot. In the next section, we present a user study that

explores whether novice users can do the same under

fixed time constraints.

7 User Study

Now that we have evaluated our algorithm in simulated

and real-world tasks with examples provided by a hu-

man expert, we will assess whether it is also easy for ev-

eryday humans to convey their reasoning while demon-

strating the task. Specifically, we conduct a study to

determine if users can intuitively place markers and

seamlessly issue language prompts without impacting

the quality of their demonstrations. We acknowledge

that deploying these inputs requires additional time,

which may reduce the time left for users to provide
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examples. Hence, we also evaluate whether our high-

level insight of communicating the key features (why)

along with the demonstrations (what) is practically ad-

vantageous when users have a fixed amount of time to

teach the robot. We compare our approach to the be-

havior cloning (BC) baseline introduced in simulations.

The difference between these methods captures our pro-

posed re-framing of imitation learning: BC learns only

from what the human does, while CIVIL enables the hu-

man to also convey why they are showing those actions

(i.e., the human conveys which robot and environment

features their policy depends upon).

Experimental Setup and Task. We use the same

robot arm and camera setup as in our real-world ex-

periments but choose a new task, Placing, for the user

study (see Figure 8). In this task the robot has to pick

up a cup and place it under a coffee machine. The cup

is always initialized in the same position while the ma-

chine can be moved along the edge of the table. There

are three other objects randomly placed on the table: a

coffee pod, a sugar box, and a coffee jar. During train-

ing the coffee machine only appears in two positions:

the nearest and farthest locations along the edge, but

during testing it can also be at intermediate locations.

Participants and Procedure. We recruited 10 par-

ticipants (1 female, average age 24.4±3.7) from Virginia

Tech’s student population. Participants received mone-

tary compensation for their time and provided informed

written consent according to university guidelines (IRB

#23-1237).

At the beginning of the study we showed partici-

pants a video of an expert demonstration and gave them

5 minutes to practice teleoperating the robot using the

joystick. During this practice session we also instructed

participants on how to attach markers and give lan-

guage prompts. In particular, we told users that mark-

ers should be attached to objects of interest such that

they are visible to the robot’s camera. Our study fol-

lowed a within-subjects design where participants pro-

vided data in two rounds, once with markers and lan-

guage, and once without the additional inputs. In each

round, users had 5 total minutes to provide as many

demonstrations as possible. This included the time re-

quired to place markers and collect any play data. It is

important to note that the markers only need to be at-

tached once at the beginning of one round, and they can

remain in place throughout all subsequent demonstra-

tions. Therefore, attaching the markers does not add

significantly to the total time required or the human

effort involved. After the trials participants answered a

survey (see Table 1) to rate their teaching experiences.

We counterbalanced the order so that half of the par-

Table 1 Survey with two 7-point Likert scales for assessing
the intuitiveness of using markers and language, and the ease
of incorporating these inputs alongside task demonstrations.

Intuitive:

- Using markers and language feels intuitive and makes sense.

- Using markers and language does not seem intuitive to me.
- I understand where to place the markers to help the robot learn.
- I do not understand where I should place the markers.

- I know what verbal instructions will help the robot learn.
- I am unsure what verbal instruction would help the robot learn.

Seamless:

- The markers did not interfere while I was performing the task.

- The markers got in my way when I was trying to perform the task.
- Speaking verbal instructions while giving demonstrations did not

interfere with my ability to perform the task effectively.

- I was unable to provide effective and accurate demonstrations
because I had to give verbal instructions at the same time.

ticipants worked with CIVIL first, and the other half

started with BC.

Dependent Variables. To assess the ease of deploy-

ing our approach we consider two subjective attributes:

Intuitive and Seamless. We measure these attributes

through the 7-point Likert scale survey shown in Ta-

ble 1. Users respond to each item in this survey with

an agreement rating from 1 to 7, where 1 is strongly

disagree and 7 is strongly agree. Higher ratings indi-

cate participants found it intuitive to use markers and

language, and they could seamlessly integrate these in-

puts into their demonstrations. We evaluate the robot’s

objective performance through the success rate of the

learned policy.

Hypothesis. We made the following hypothesis:

H1. Users will find teaching robots with CIVIL

(i.e., showing demonstrations with markers and

language) to be just as intuitive and seamless as

providing demonstrations for standard BC.

H2. Given the same amount of training time,

robots using CIVIL will perform the task more

successfully than robots with standard BC.

Training and Testing. In a time window of 5 min-

utes users provided an average of ∼11 demonstrations

without any additional inputs, and ∼9 demonstrations

when also working with markers and language. We ag-

gregated the data provided by users into two datasets: i)

DBC which includes the states x, images y, and actions

u from the baseline round, and ii) DCIV IL which in-

cludes marker readings b and language prompts l along

with the (x, y, u) samples from our proposed round. We

also processed the user’s language commands to extract

the relevant objects. Specifically, we computed the co-

sine similarity between the text transcribed by Whis-

per [41] and a pre-defined library containing descrip-

tions for all objects in the environment. For example,
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Fig. 8 User study results from Section 7. (Left) Subjective ratings on a 7-point Likert scale, where higher values indicate
agreement with the statements in Table 1. Users subjectively perceived the process of placing markers and explaining actions
to be intuitive. Users also reported that they were able to seamlessly include these additional steps into their teaching process.
(Middle) Objectively, augmenting the demonstrations with feature supervision (CIVIL) led to a significantly better performance
than simply providing more action demonstrations to the robot (BC). Here we use a darker shade to denote success in releasing
the cup without accidentally toppling it over. (Right) We show an example rollout of both approaches. In this example CIVIL
accurately takes the cup to the coffee machine after picking it up, while BC mistakenly takes the cup to the wrong location.

“coffee machine” and “black Keurig” were mapped to

“black coffee maker”.

For testing, we first randomly sampled 15 demon-

strations from DBC and 13 from DCIV IL — amounting

to 7 minutes of data — to train the respective methods.

We then rolled out the trained models in 9 scenarios,

which included 6 configurations where the coffee ma-

chine was near the closest or farthest point along the

table, and 3 contexts where the coffee machine was in an

unseen center position. Other objects were positioned

randomly in each scenario. We averaged our final results

over 3 end-to-end runs.

Results. Figure 8 summarizes our study outcomes.

Overall, users reported that they found it intuitive

to deploy markers and speak language commands while

teleoperating the robot. To evaluate their subjective re-

sponses, we combined ratings for the survey questions

into two scores: one for intuitive and one for seam-

less. T-tests indicated that the average user scores for

the Intuitive (t(9) = 12.99, p < 0.001) and Seam-

less (t(9) = 4.34, p < 0.001) scales were significantly

higher than the neutral score of 4. We note that we did

not physically show users how to attach markers; we

only gave them verbal instructions during the practice

round. Therefore, this result indicates that it was easy

for users to understand, remember, and implement our

data collection procedure. It also supports our hypothe-

ses H1. However, we caveat this result with the aware-

ness that 8 of our 10 participants stated they had pre-

viously interacted with robots, which may have helped

them comprehend how robots learn from visual obser-

vations and provide more informed training data.

Given that users understand how to use markers

and language, we now explore whether it is worthwhile

for them to invest time in providing these inputs when

demonstrating the task. We observed that robots that

were trained with CIVIL learned to grasp the cup and

bring it to the coffee machine with a success rate higher

than 77% (see the right side of Figure 8). By contrast,

the BC baseline’s success rate was about 40%, despite

receiving more demonstrations than CIVIL. This sug-

gests that robots trained without knowledge of the key

task features may not realize the human’s intent and

can be causally confused by the random placement of

surrounding clutter in the test scenarios. It also sup-

ports our hypothesis H2 and highlights the advantage

of a human teacher who conveys the key features (why

to do it) instead of simply providing more demonstra-

tions of their desired behavior (what to do).

Lastly, when taking a closer look at where our ap-

proach was superior to standard behavior cloning, we

found that CIVIL was significantly more successful in

picking up and releasing the cup than BC. For instance,

the robot failed to pick up the cup in only 15% of

the test scenarios when using CIVIL, compared to 48%

when trained with BC. Also, when the robot did man-

age to pick the cup and take it to the coffee machine,

CIVIL was 30% more successful than BC in releas-

ing the cup and moving out without knocking it over.

Both these instances represent key states in the task

where the robot needs to be the most accurate. This

is where training with marker readings helps CIVIL to

be more precise than conventional approaches that rely

on the robot to extract such positional features with-

out any human guidance. We also hypothesize that the

expressiveness of natural language commands helped

non-expert users. When the robot purely learns from

motion demonstrations, any errors in these movements
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can lead to confusion. But when the robot reasons over

the associated language and markers, CIVIL enables

the robot to correctly parse the relevant features, even

if the human’s motions are imperfect.

In summary, our user study underscores that CIVIL

enhances robot learning not by obtaining more data

from humans but by providing context to their data. We

find that CIVIL can significantly improve the robot’s

ability to learn and generalize to new tasks with only a

few context-rich demonstrations.

8 Conclusion

In this paper we tackle the problem of causal confusion

in visual imitation learning by proposing a fundamental

shift in the way humans provide demonstrations, and

then leveraging that augmented data to explain the hu-

man’s actions. Given just action demonstrations and

high-dimensional visual observations, robots can strug-

gle to autonomously extract the correct feature repre-

sentations. Without these representations, we analyti-

cally and experimentally show that robots may learn

to condition their policies on extraneous or spuriously-

correlated data, leading to out-of-distribution failures.

To address this challenge, we propose that humans sup-

plement their action demonstrations with additional

cues that reveal their decision-making process. Specifi-

cally, we enable humans to deploy physical markers and

utter natural language instructions to intuitively con-

vey task-relevant positions and objects that form part

of the desired feature representation.

Our main technical contribution is a visual imitation

algorithm, CIVIL, that leverages the verbal prompts

to mask unnecessary details from the robot’s images

and the physical markers to extract a compact fea-

ture representation that encodes relevant positional in-

formation. Our simulations and real-world experiments

demonstrate that when we use these features to train

the robot’s policy it learns the task more efficiently, re-

quiring fewer demonstrations than existing approaches.

CIVIL also enables robots to generalize to new task

configurations that are outside the training distribu-

tion, indicating that the robot learns features that effec-

tively capture human reasoning. A distinct advantage

of CIVIL is that the robot does not need markers, lan-

guage instructions, or pretrained vision models at run

time when it autonomously performing the task.

Limitations and Future Work. This work is a step

towards maximizing what robots can learn from hu-

man examples. However, our current approach has some

limitations. For instance, we rely on humans to mark

or mention the relevant objects. This may lead to er-

rors when teaching tasks that contain several relevant

components — humans could forget an essential ob-

ject or mistakenly mention an irrelevant object. Future

work should account for such potential human errors

to prevent the robot from learning incomplete or non-

causal representations. A possible way to mitigate this

issue would be to actively remind and interact with

users throughout the demonstration process. Another

limitation of our work is that we only use verbal com-

mands to identify the task-relevant objects. However,

human instructions often contain additional insights

such as qualitative descriptions of the demonstrated ac-

tion (e.g., “go straight to” or “place carefully under”).

Leveraging these latent signals can help robots make

full use of the human’s inputs and further accelerate

the learning process.

9 Declarations

Funding. This research was supported in part by the

NSF (Grant Number 2337884).

Conflict of Interest. The authors declare that they

have no conflicts of interest.

Ethical Statement. All physical experiments that re-

lied on interactions with humans were conducted under

university guidelines and followed the protocol of Vir-

ginia Tech IRB #23-1237.

Author Contribution. Y.D. and R.S. led the algo-

rithm development for visual feature extraction. Y.D.

contributed to the use of physical markers. R.S. led the

setup of the simulation environment. H.N. led the de-

velopment of the theoretical background. H.N. and D.L.

wrote the first manuscript draft. Y.D. and R.J. ran

the simulations and R.S. conducted the physical ex-

periments. S.S. and C.N. provided valuable assistance

and support throughout the project. D.L. supervised

the project, helped develop the method, and edited the

manuscript.

References

1. Ahmed, N.A., Gokhale, D.: Entropy expressions and their
estimators for multivariate distributions. IEEE Transac-
tions on Information Theory 35(3), 688–692 (1989)

2. Amemiya, T.: Advanced Econometrics. Harvard Univer-
sity Press (1985)

3. Basu, C., Singhal, M., Dragan, A.D.: Learning from
richer human guidance: Augmenting comparison-based
learning with feature queries. In: ACM/IEEE Interna-
tional Conference on Human-Robot Interaction, pp. 132–
140 (2018)



CIVIL: Causal and Intuitive Visual Imitation Learning 23

4. Bica, I., Jarrett, D., van der Schaar, M.: Invariant causal
imitation learning for generalizable policies. In: Advances
in Neural Information Processing Systems, pp. 3952–3964
(2021)

5. Biswas, A., Pardhi, B.A., Chuck, C., Holtz, J., Niekum,
S., Admoni, H., Allievi, A.: Gaze supervision for mitigat-
ing causal confusion in driving agents. In: IEEE Intelli-
gent Vehicles Symposium, pp. 2331–2338 (2024)

6. Bobu, A., Peng, A., Agrawal, P., Shah, J.A., Dragan,
A.D.: Aligning human and robot representations. In:
ACM/IEEE International Conference on Human-Robot
Interaction, pp. 42–54 (2024)

7. Bobu, A., Wiggert, M., Tomlin, C., Dragan, A.D.: In-
ducing structure in reward learning by learning features.
The International Journal of Robotics Research 41(5),
497–518 (2022)

8. Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Chen,
X., Choromanski, K., Ding, T., Driess, D., Dubey, A.,
Finn, C., et al.: Rt-2: Vision-language-action models
transfer web knowledge to robotic control. arXiv preprint
arXiv:2307.15818 (2023)

9. Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis,
J., Finn, C., Gopalakrishnan, K., Hausman, K., Herzog,
A., Hsu, J., et al.: Rt-1: Robotics transformer for real-
world control at scale. arXiv preprint arXiv:2212.06817
(2022)

10. Cakmak, M., Thomaz, A.L.: Designing robot learners
that ask good questions. In: ACM/IEEE International
Conference on Human-Robot Interaction (2012)

11. Casella, G., Berger, R.: Statistical Inference. CRC Press
(2024)

12. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A sim-
ple framework for contrastive learning of visual represen-
tations. In: International Conference on Machine Learn-
ing, pp. 1597–1607 (2020)

13. Cheng, H.K., Oh, S.W., Price, B., Schwing, A., Lee, J.Y.:
Tracking anything with decoupled video segmentation.
In: IEEE/CVF International Conference on Computer
Vision, pp. 1316–1326 (2023)

14. De Haan, P., Jayaraman, D., Levine, S.: Causal confusion
in imitation learning. In: Advances in Neural Information
Processing Systems (2019)

15. Doersch, C.: Tutorial on variational autoencoders. arXiv
preprint arXiv:1606.05908 (2016)
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